in salina_examples/rl/dqn/double_dqn/dqn.py [0:0]
def run_dqn(q_agent, logger, cfg):
q_agent.set_name("q_agent")
env_agent = AutoResetGymAgent(
get_class(cfg.algorithm.env),
get_arguments(cfg.algorithm.env),
n_envs=int(cfg.algorithm.n_envs / cfg.algorithm.n_processes),
)
q_target_agent = copy.deepcopy(q_agent)
acq_agent = TemporalAgent(Agents(env_agent, copy.deepcopy(q_agent)))
acq_remote_agent, acq_workspace = NRemoteAgent.create(
acq_agent,
num_processes=cfg.algorithm.n_processes,
t=0,
n_steps=cfg.algorithm.n_timesteps,
epsilon=1.0,
)
acq_remote_agent.seed(cfg.algorithm.env_seed)
# == Setting up the training agents
train_temporal_q_agent = TemporalAgent(q_agent)
train_temporal_q_target_agent = TemporalAgent(q_target_agent)
train_temporal_q_agent.to(cfg.algorithm.loss_device)
train_temporal_q_target_agent.to(cfg.algorithm.loss_device)
replay_buffer = ReplayBuffer(cfg.algorithm.buffer_size)
acq_remote_agent(acq_workspace, t=0, n_steps=cfg.algorithm.n_timesteps, epsilon=1.0)
replay_buffer.put(acq_workspace, time_size=cfg.algorithm.buffer_time_size)
logger.message("[DDQN] Initializing replay buffer")
while replay_buffer.size() < cfg.algorithm.initial_buffer_size:
acq_workspace.copy_n_last_steps(cfg.algorithm.overlapping_timesteps)
acq_remote_agent(
acq_workspace,
t=cfg.algorithm.overlapping_timesteps,
n_steps=cfg.algorithm.n_timesteps - cfg.algorithm.overlapping_timesteps,
epsilon=1.0,
)
replay_buffer.put(acq_workspace, time_size=cfg.algorithm.buffer_time_size)
logger.message("[DDQN] Learning")
epsilon_by_epoch = lambda epoch: cfg.algorithm.epsilon_final + (
cfg.algorithm.epsilon_start - cfg.algorithm.epsilon_final
) * math.exp(-1.0 * epoch / cfg.algorithm.epsilon_exploration_decay)
optimizer_args = get_arguments(cfg.algorithm.optimizer)
optimizer = get_class(cfg.algorithm.optimizer)(
q_agent.parameters(), **optimizer_args
)
iteration = 0
for epoch in range(cfg.algorithm.max_epoch):
epsilon = epsilon_by_epoch(epoch)
logger.add_scalar("monitor/epsilon", epsilon, iteration)
for a in acq_remote_agent.get_by_name("q_agent"):
a.load_state_dict(_state_dict(q_agent, "cpu"))
acq_workspace.copy_n_last_steps(cfg.algorithm.overlapping_timesteps)
acq_remote_agent(
acq_workspace,
t=cfg.algorithm.overlapping_timesteps,
n_steps=cfg.algorithm.n_timesteps - cfg.algorithm.overlapping_timesteps,
epsilon=epsilon,
)
replay_buffer.put(acq_workspace, time_size=cfg.algorithm.buffer_time_size)
done, creward = acq_workspace["env/done", "env/cumulated_reward"]
creward = creward[done]
if creward.size()[0] > 0:
logger.add_scalar("monitor/reward", creward.mean().item(), epoch)
logger.add_scalar("monitor/replay_buffer_size", replay_buffer.size(), epoch)
# Inner loop to minimize the TD
for inner_epoch in range(cfg.algorithm.inner_epochs):
batch_size = cfg.algorithm.batch_size
replay_workspace = replay_buffer.get(batch_size).to(
cfg.algorithm.loss_device
)
# Batch size + Time_size
action = replay_workspace["action"]
train_temporal_q_agent(
replay_workspace,
t=0,
n_steps=cfg.algorithm.buffer_time_size,
replay=True,
epsilon=0.0,
)
q, done, reward = replay_workspace["q", "env/done", "env/reward"]
with torch.no_grad():
train_temporal_q_target_agent(
replay_workspace,
t=0,
n_steps=cfg.algorithm.buffer_time_size,
replay=True,
epsilon=0.0,
)
q_target = replay_workspace["q"]
td = RLF.doubleqlearning_temporal_difference(
q,
action,
q_target,
reward,
done,
cfg.algorithm.discount_factor,
)
error = td ** 2
# Add burning steps for the first timesteps in the trajectories (for recurrent policies)
burning = torch.zeros_like(td)
burning[cfg.algorithm.burning_timesteps :] = 1.0
error = error * burning
loss = error.mean()
logger.add_scalar("loss/q_loss", loss.item(), iteration)
optimizer.zero_grad()
loss.backward()
if cfg.algorithm.clip_grad > 0:
n = torch.nn.utils.clip_grad_norm_(
q_agent.parameters(), cfg.algorithm.clip_grad
)
logger.add_scalar("monitor/grad_norm", n.item(), iteration)
optimizer.step()
iteration += 1
# Update of the target network
if cfg.algorithm.hard_target_update:
if epoch % cfg.algorithm.update_target_epochs == 0:
q_target_agent.load_state_dict(q_agent.state_dict())
else:
tau = cfg.algorithm.update_target_tau
soft_update_params(q_agent, q_target_agent, tau)