def __init__()

in ss_baselines/av_nav/ppo/policy.py [0:0]


    def __init__(self, observation_space, hidden_size, goal_sensor_uuid, extra_rgb=False):
        super().__init__()
        self.goal_sensor_uuid = goal_sensor_uuid
        self._hidden_size = hidden_size
        self._audiogoal = False
        self._pointgoal = False
        self._n_pointgoal = 0

        if DUAL_GOAL_DELIMITER in self.goal_sensor_uuid:
            goal1_uuid, goal2_uuid = self.goal_sensor_uuid.split(DUAL_GOAL_DELIMITER)
            self._audiogoal = self._pointgoal = True
            self._n_pointgoal = observation_space.spaces[goal1_uuid].shape[0]
        else:
            if 'pointgoal_with_gps_compass' == self.goal_sensor_uuid:
                self._pointgoal = True
                self._n_pointgoal = observation_space.spaces[self.goal_sensor_uuid].shape[0]
            else:
                self._audiogoal = True

        self.visual_encoder = VisualCNN(observation_space, hidden_size, extra_rgb)
        if self._audiogoal:
            if 'audiogoal' in self.goal_sensor_uuid:
                audiogoal_sensor = 'audiogoal'
            elif 'spectrogram' in self.goal_sensor_uuid:
                audiogoal_sensor = 'spectrogram'
            self.audio_encoder = AudioCNN(observation_space, hidden_size, audiogoal_sensor)

        rnn_input_size = (0 if self.is_blind else self._hidden_size) + \
                         (self._n_pointgoal if self._pointgoal else 0) + (self._hidden_size if self._audiogoal else 0)
        self.state_encoder = RNNStateEncoder(rnn_input_size, self._hidden_size)

        if 'rgb' in observation_space.spaces and not extra_rgb:
            rgb_shape = observation_space.spaces['rgb'].shape
            summary(self.visual_encoder.cnn, (rgb_shape[2], rgb_shape[0], rgb_shape[1]), device='cpu')
        if 'depth' in observation_space.spaces:
            depth_shape = observation_space.spaces['depth'].shape
            summary(self.visual_encoder.cnn, (depth_shape[2], depth_shape[0], depth_shape[1]), device='cpu')
        if self._audiogoal:
            audio_shape = observation_space.spaces[audiogoal_sensor].shape
            summary(self.audio_encoder.cnn, (audio_shape[2], audio_shape[0], audio_shape[1]), device='cpu')

        self.train()