gossip_sgd.py [555:602]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                normalize]))

        # sampler produces indices used to assign each agent data samples
        train_sampler = torch.utils.data.distributed.DistributedSampler(
                            dataset=train_dataset,
                            num_replicas=args.world_size,
                            rank=args.rank)

        train_loader = torch.utils.data.DataLoader(
            train_dataset, batch_size=args.batch_size,
            shuffle=(train_sampler is None),
            num_workers=args.num_dataloader_workers,
            pin_memory=True, sampler=train_sampler)

        return train_loader, train_sampler

    else:
        log.debug('fpaths val {}'.format(val_dir))

        val_loader = torch.utils.data.DataLoader(
            datasets.ImageFolder(val_dir, transforms.Compose([
                transforms.Resize(256),
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                normalize])),
            batch_size=args.batch_size, shuffle=False,
            num_workers=args.num_dataloader_workers, pin_memory=True)

        return val_loader


def parse_args():
    """
    Set env-vars and global args
        rank: <-- $SLRUM_PROCID
        world_size<-- $SLURM_NTASKS
        Master address <-- $SLRUM_NODENAME of rank 0 process (or HOSTNAME)
        Master port <-- any free port (doesn't really matter)
    """
    args = parser.parse_args()
    ClusterManager.set_checkpoint_dir(args.checkpoint_dir)

    # rank and world_size need to be changed depending on the scheduler being
    # used to run the distributed jobs
    args.master_addr = os.environ['HOSTNAME']
    if args.backend == 'mpi':
        args.rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
        args.world_size = int(os.environ['OMPI_UNIVERSE_SIZE'])
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



gossip_sgd_adpsgd.py [578:622]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                            normalize]))

        # sampler produces indices used to assign data samples to each agent
        train_sampler = torch.utils.data.distributed.DistributedSampler(
                            dataset=train_dataset,
                            num_replicas=args.world_size,
                            rank=args.rank)

        train_loader = torch.utils.data.DataLoader(
            train_dataset, batch_size=args.batch_size,
            shuffle=(train_sampler is None),
            num_workers=args.num_dataloader_workers,
            pin_memory=True, sampler=train_sampler)

        return train_loader, train_sampler

    else:
        log.debug('fpaths val {}'.format(val_dir))
        val_loader = torch.utils.data.DataLoader(
            datasets.ImageFolder(val_dir, transforms.Compose([
                transforms.Resize(256),
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                normalize])),
            batch_size=args.batch_size, shuffle=False,
            num_workers=args.num_dataloader_workers, pin_memory=True)

        return val_loader


def parse_args():
    """
    Set env-vars and global args
        rank: <-- $SLRUM_PROCID
        world_size<-- $SLURM_NTASKS
        Master address <-- $SLRUM_NODENAME of rank 0 process (or HOSTNAME)
        Master port <-- any free port (doesn't really matter)
    """
    args = parser.parse_args()
    ClusterManager.set_checkpoint_dir(args.checkpoint_dir)

    args.master_addr = os.environ['HOSTNAME']
    if args.backend == 'mpi':
        args.rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
        args.world_size = int(os.environ['OMPI_UNIVERSE_SIZE'])
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



