def train()

in gossip_sgd.py [0:0]


def train(model, criterion, optimizer, batch_meter, data_meter, nn_meter,
          loader, epoch, itr, begin_time, num_itr_ignore):

    losses = Meter(ptag='Loss')
    top1 = Meter(ptag='Prec@1')
    top5 = Meter(ptag='Prec@5')

    # switch to train mode
    model.train()

    # spoof sampler to continue from checkpoint w/o loading data all over again
    _train_loader = loader.__iter__()
    for i in range(itr):
        try:
            next(_train_loader.sample_iter)
        except Exception:
            # finished epoch but prempted before state was updated
            log.info('Loader spoof error attempt {}/{}'.format(i, len(loader)))
            return

    log.debug('Training (epoch {})'.format(epoch))

    batch_time = time.time()
    for i, (batch, target) in enumerate(_train_loader, start=itr):
        target = target.cuda(non_blocking=True)
        # create one-hot vector from target
        kl_target = torch.zeros(target.shape[0], 1000, device='cuda').scatter_(
            1, target.view(-1, 1), 1)

        if num_itr_ignore == 0:
            data_meter.update(time.time() - batch_time)

        # ----------------------------------------------------------- #
        # Forward/Backward pass
        # ----------------------------------------------------------- #
        nn_time = time.time()
        output = model(batch)
        loss = criterion(output, kl_target)
        loss.backward()

        if i % 100 == 0:
            update_learning_rate(optimizer, epoch, itr=i,
                                 itr_per_epoch=len(loader))
        optimizer.step()  # optimization update
        optimizer.zero_grad()
        if not args.overlap and not args.all_reduce:
            log.debug('Transferring params')
            model.transfer_params()
        if num_itr_ignore == 0:
            nn_meter.update(time.time() - nn_time)
        # ----------------------------------------------------------- #

        if num_itr_ignore == 0:
            batch_meter.update(time.time() - batch_time)
        batch_time = time.time()

        log_time = time.time()
        # measure accuracy and record loss
        prec1, prec5 = accuracy(output, target, topk=(1, 5))
        losses.update(loss.item(), batch.size(0))
        top1.update(prec1.item(), batch.size(0))
        top5.update(prec5.item(), batch.size(0))
        if i % args.print_freq == 0:
            with open(args.out_fname, '+a') as f:
                print('{ep},{itr},{bt},{nt},{dt},'
                      '{loss.val:.4f},{loss.avg:.4f},'
                      '{top1.val:.3f},{top1.avg:.3f},'
                      '{top5.val:.3f},{top5.avg:.3f},-1'
                      .format(ep=epoch, itr=i,
                              bt=batch_meter,
                              dt=data_meter, nt=nn_meter,
                              loss=losses, top1=top1,
                              top5=top5), file=f)
        if num_itr_ignore > 0:
            num_itr_ignore -= 1
        log_time = time.time() - log_time
        log.debug(log_time)

        if (args.num_iterations_per_training_epoch != -1 and
                i+1 == args.num_iterations_per_training_epoch):
            break

    with open(args.out_fname, '+a') as f:
        print('{ep},{itr},{bt},{nt},{dt},'
              '{loss.val:.4f},{loss.avg:.4f},'
              '{top1.val:.3f},{top1.avg:.3f},'
              '{top5.val:.3f},{top5.avg:.3f},-1'
              .format(ep=epoch, itr=i,
                      bt=batch_meter,
                      dt=data_meter, nt=nn_meter,
                      loss=losses, top1=top1,
                      top5=top5), file=f)