def init_pipe()

in snn_eval.py [0:0]


    def init_pipe(training):
        # -- make data transforms
        transform, init_transform = make_transforms(
            dataset_name=dataset_name,
            subset_path=subset_path,
            unlabeled_frac=unlabeled_frac if training else 0.,
            training=training,
            split_seed=split_seed,
            basic_augmentations=True,
            force_center_crop=True,
            normalize=normalize)

        # -- init data-loaders/samplers
        (data_loader,
         data_sampler) = init_data(
            dataset_name=dataset_name,
            transform=transform,
            init_transform=init_transform,
            u_batch_size=None,
            s_batch_size=16,
            stratify=False,
            classes_per_batch=None,
            world_size=1,
            rank=0,
            root_path=root_path,
            image_folder=image_folder,
            training=training,
            copy_data=False,
            drop_last=False)

        return transform, init_transform, data_loader, data_sampler