def step()

in src/lars.py [0:0]


    def step(self):
        with torch.no_grad():
            stats = AverageMeter()
            weight_decays = []
            for group in self.optim.param_groups:

                # -- takes weight decay control from wrapped optimizer
                weight_decay = group['weight_decay'] if 'weight_decay' in group else 0
                weight_decays.append(weight_decay)

                # -- user wants to exclude this parameter group from LARS
                #    adaptation
                if ('LARS_exclude' in group) and group['LARS_exclude']:
                    continue
                group['weight_decay'] = 0

                for p in group['params']:
                    if p.grad is None:
                        continue
                    param_norm = torch.norm(p.data)
                    grad_norm = torch.norm(p.grad.data)

                    if param_norm != 0 and grad_norm != 0:
                        adaptive_lr = self.trust_coefficient * (param_norm) / (grad_norm + param_norm * weight_decay + self.eps)

                        stats.update(adaptive_lr)
                        p.grad.data += weight_decay * p.data
                        p.grad.data *= adaptive_lr

        self.optim.step()
        # -- return weight decay control to wrapped optimizer
        for i, group in enumerate(self.optim.param_groups):
            group['weight_decay'] = weight_decays[i]

        return stats