def log()

in svg/logger.py [0:0]


    def log(self, key, value, step, n=1, log_frequency=1):
        if not self._should_log(step, log_frequency):
            return
        assert key.startswith('train') or key.startswith('eval')
        if type(value) == torch.Tensor:
            value = value.item()
        self._try_sw_log(key, value / n, step)
        mg = self._train_mg if key.startswith('train') else self._eval_mg
        mg.log(key, value, n)