in svinfer/linear_model/logistic_regression.py [0:0]
def fit(self, data):
assert isinstance(data, AbstractProcessor)
x, y = data.prepare_xy(self.x_columns, self.y_column, self.fit_intercept)
beta_est, success = LogisticRegression._get_coefficients(
x, y, self.x_s2, data.run_query
)
if not success:
logging.warning("optimization does not converge!")
var_est = LogisticRegression._get_covariance(
beta_est, x, y, self.x_s2, data.run_query
)
self.success = success
self.beta = beta_est
self.beta_vcov = var_est
self.beta_standarderror = np.sqrt(np.diag(var_est))
return self