def overlap_and_add()

in svoice/utils.py [0:0]


def overlap_and_add(signal, frame_step):
    """Reconstructs a signal from a framed representation.

    Adds potentially overlapping frames of a signal with shape
    `[..., frames, frame_length]`, offsetting subsequent frames by `frame_step`.
    The resulting tensor has shape `[..., output_size]` where

        output_size = (frames - 1) * frame_step + frame_length

    Args:
        signal: A [..., frames, frame_length] Tensor. All dimensions may be unknown, and rank must be at least 2.
        frame_step: An integer denoting overlap offsets. Must be less than or equal to frame_length.

    Returns:
        A Tensor with shape [..., output_size] containing the overlap-added frames of signal's inner-most two dimensions.
        output_size = (frames - 1) * frame_step + frame_length

    Based on https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/contrib/signal/python/ops/reconstruction_ops.py
    """
    outer_dimensions = signal.size()[:-2]
    frames, frame_length = signal.size()[-2:]

    # gcd=Greatest Common Divisor
    subframe_length = math.gcd(frame_length, frame_step)
    subframe_step = frame_step // subframe_length
    subframes_per_frame = frame_length // subframe_length
    output_size = frame_step * (frames - 1) + frame_length
    output_subframes = output_size // subframe_length

    subframe_signal = signal.view(*outer_dimensions, -1, subframe_length)

    frame = torch.arange(0, output_subframes).unfold(
        0, subframes_per_frame, subframe_step)
    frame = frame.clone().detach().long().to(signal.device)
    # frame = signal.new_tensor(frame).clone().long()  # signal may in GPU or CPU
    frame = frame.contiguous().view(-1)

    result = signal.new_zeros(
        *outer_dimensions, output_subframes, subframe_length)
    result.index_add_(-2, frame, subframe_signal)
    result = result.view(*outer_dimensions, -1)
    return result