in svoice/evaluate.py [0:0]
def evaluate(args, model=None, data_loader=None, sr=None):
total_sisnr = 0
total_pesq = 0
total_stoi = 0
total_cnt = 0
updates = 5
# Load model
if not model:
pkg = torch.load(args.model_path, map_location=args.device)
if 'model' in pkg:
model = pkg['model']
else:
model = pkg
model = deserialize_model(model)
if 'best_state' in pkg:
model.load_state_dict(pkg['best_state'])
logger.debug(model)
model.eval()
model.to(args.device)
# Load data
if not data_loader:
dataset = Validset(args.data_dir)
data_loader = distrib.loader(
dataset, batch_size=1, num_workers=args.num_workers)
sr = args.sample_rate
pendings = []
with ProcessPoolExecutor(args.num_workers) as pool:
with torch.no_grad():
iterator = LogProgress(logger, data_loader, name="Eval estimates")
for i, data in enumerate(iterator):
# Get batch data
mixture, lengths, sources = [x.to(args.device) for x in data]
# Forward
with torch.no_grad():
mixture /= mixture.max()
estimate = model(mixture)[-1]
sisnr_loss, snr, estimate, reorder_estimate = cal_loss(
sources, estimate, lengths)
reorder_estimate = reorder_estimate.cpu()
sources = sources.cpu()
mixture = mixture.cpu()
pendings.append(
pool.submit(_run_metrics, sources, reorder_estimate, mixture, None,
sr=sr))
total_cnt += sources.shape[0]
for pending in LogProgress(logger, pendings, updates, name="Eval metrics"):
sisnr_i, pesq_i, stoi_i = pending.result()
total_sisnr += sisnr_i
total_pesq += pesq_i
total_stoi += stoi_i
metrics = [total_sisnr, total_pesq, total_stoi]
sisnr, pesq, stoi = distrib.average(
[m/total_cnt for m in metrics], total_cnt)
logger.info(
bold(f'Test set performance: SISNRi={sisnr:.2f} PESQ={pesq}, STOI={stoi}.'))
return sisnr, pesq, stoi