main_deepclusterv2.py [106:127]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
parser.add_argument("--sync_bn", type=str, default="pytorch", help="synchronize bn")
parser.add_argument("--syncbn_process_group_size", type=int, default=8, help=""" see
                    https://github.com/NVIDIA/apex/blob/master/apex/parallel/__init__.py#L58-L67""")
parser.add_argument("--dump_path", type=str, default=".",
                    help="experiment dump path for checkpoints and log")
parser.add_argument("--seed", type=int, default=31, help="seed")


def main():
    global args
    args = parser.parse_args()
    init_distributed_mode(args)
    fix_random_seeds(args.seed)
    logger, training_stats = initialize_exp(args, "epoch", "loss")

    # build data
    train_dataset = MultiCropDataset(
        args.data_path,
        args.size_crops,
        args.nmb_crops,
        args.min_scale_crops,
        args.max_scale_crops,
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



main_swav.py [115:136]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
parser.add_argument("--sync_bn", type=str, default="pytorch", help="synchronize bn")
parser.add_argument("--syncbn_process_group_size", type=int, default=8, help=""" see
                    https://github.com/NVIDIA/apex/blob/master/apex/parallel/__init__.py#L58-L67""")
parser.add_argument("--dump_path", type=str, default=".",
                    help="experiment dump path for checkpoints and log")
parser.add_argument("--seed", type=int, default=31, help="seed")


def main():
    global args
    args = parser.parse_args()
    init_distributed_mode(args)
    fix_random_seeds(args.seed)
    logger, training_stats = initialize_exp(args, "epoch", "loss")

    # build data
    train_dataset = MultiCropDataset(
        args.data_path,
        args.size_crops,
        args.nmb_crops,
        args.min_scale_crops,
        args.max_scale_crops,
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



