def main()

in main_swav.py [0:0]


def main():
    global args
    args = parser.parse_args()
    init_distributed_mode(args)
    fix_random_seeds(args.seed)
    logger, training_stats = initialize_exp(args, "epoch", "loss")

    # build data
    train_dataset = MultiCropDataset(
        args.data_path,
        args.size_crops,
        args.nmb_crops,
        args.min_scale_crops,
        args.max_scale_crops,
    )
    sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        sampler=sampler,
        batch_size=args.batch_size,
        num_workers=args.workers,
        pin_memory=True,
        drop_last=True
    )
    logger.info("Building data done with {} images loaded.".format(len(train_dataset)))

    # build model
    model = resnet_models.__dict__[args.arch](
        normalize=True,
        hidden_mlp=args.hidden_mlp,
        output_dim=args.feat_dim,
        nmb_prototypes=args.nmb_prototypes,
    )
    # synchronize batch norm layers
    if args.sync_bn == "pytorch":
        model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
    elif args.sync_bn == "apex":
        # with apex syncbn we sync bn per group because it speeds up computation
        # compared to global syncbn
        process_group = apex.parallel.create_syncbn_process_group(args.syncbn_process_group_size)
        model = apex.parallel.convert_syncbn_model(model, process_group=process_group)
    # copy model to GPU
    model = model.cuda()
    if args.rank == 0:
        logger.info(model)
    logger.info("Building model done.")

    # build optimizer
    optimizer = torch.optim.SGD(
        model.parameters(),
        lr=args.base_lr,
        momentum=0.9,
        weight_decay=args.wd,
    )
    optimizer = LARC(optimizer=optimizer, trust_coefficient=0.001, clip=False)
    warmup_lr_schedule = np.linspace(args.start_warmup, args.base_lr, len(train_loader) * args.warmup_epochs)
    iters = np.arange(len(train_loader) * (args.epochs - args.warmup_epochs))
    cosine_lr_schedule = np.array([args.final_lr + 0.5 * (args.base_lr - args.final_lr) * (1 + \
                         math.cos(math.pi * t / (len(train_loader) * (args.epochs - args.warmup_epochs)))) for t in iters])
    lr_schedule = np.concatenate((warmup_lr_schedule, cosine_lr_schedule))
    logger.info("Building optimizer done.")

    # init mixed precision
    if args.use_fp16:
        model, optimizer = apex.amp.initialize(model, optimizer, opt_level="O1")
        logger.info("Initializing mixed precision done.")

    # wrap model
    model = nn.parallel.DistributedDataParallel(
        model,
        device_ids=[args.gpu_to_work_on]
    )

    # optionally resume from a checkpoint
    to_restore = {"epoch": 0}
    restart_from_checkpoint(
        os.path.join(args.dump_path, "checkpoint.pth.tar"),
        run_variables=to_restore,
        state_dict=model,
        optimizer=optimizer,
        amp=apex.amp,
    )
    start_epoch = to_restore["epoch"]

    # build the queue
    queue = None
    queue_path = os.path.join(args.dump_path, "queue" + str(args.rank) + ".pth")
    if os.path.isfile(queue_path):
        queue = torch.load(queue_path)["queue"]
    # the queue needs to be divisible by the batch size
    args.queue_length -= args.queue_length % (args.batch_size * args.world_size)

    cudnn.benchmark = True

    for epoch in range(start_epoch, args.epochs):

        # train the network for one epoch
        logger.info("============ Starting epoch %i ... ============" % epoch)

        # set sampler
        train_loader.sampler.set_epoch(epoch)

        # optionally starts a queue
        if args.queue_length > 0 and epoch >= args.epoch_queue_starts and queue is None:
            queue = torch.zeros(
                len(args.crops_for_assign),
                args.queue_length // args.world_size,
                args.feat_dim,
            ).cuda()

        # train the network
        scores, queue = train(train_loader, model, optimizer, epoch, lr_schedule, queue)
        training_stats.update(scores)

        # save checkpoints
        if args.rank == 0:
            save_dict = {
                "epoch": epoch + 1,
                "state_dict": model.state_dict(),
                "optimizer": optimizer.state_dict(),
            }
            if args.use_fp16:
                save_dict["amp"] = apex.amp.state_dict()
            torch.save(
                save_dict,
                os.path.join(args.dump_path, "checkpoint.pth.tar"),
            )
            if epoch % args.checkpoint_freq == 0 or epoch == args.epochs - 1:
                shutil.copyfile(
                    os.path.join(args.dump_path, "checkpoint.pth.tar"),
                    os.path.join(args.dump_checkpoints, "ckp-" + str(epoch) + ".pth"),
                )
        if queue is not None:
            torch.save({"queue": queue}, queue_path)