models/encoderdecoder.py [68:89]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            nn.BatchNorm2d(4096),
            UnCollapseLayer(64, 8, 8),
            nn.Conv2d(64, 256, 3, 1, padding=1),
            nn.ReLU(),
            nn.BatchNorm2d(256),
            nn.Upsample(scale_factor=2),
            nn.Conv2d(256, 128, 3, 1, padding=1),
            nn.ReLU(),
            nn.BatchNorm2d(128),
            nn.Upsample(scale_factor=2),
            nn.Conv2d(128, 64, 3, 1, padding=1),
            nn.ReLU(),
            nn.BatchNorm2d(64),
            nn.Upsample(scale_factor=2),
            nn.Conv2d(64, 32, 3, 1, padding=1),
            nn.ReLU(),
            nn.BatchNorm2d(32),
            nn.Upsample(scale_factor=2),
            nn.Conv2d(32, 16, 3, 1, padding=1),
            nn.ReLU(),
            nn.BatchNorm2d(16),
            nn.Upsample(scale_factor=2),
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



models/encoderdecoder.py [221:242]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            nn.BatchNorm2d(4096),
            UnCollapseLayer(64, 8, 8),
            nn.Conv2d(64, 256, 3, 1, padding=1),
            nn.ReLU(),
            nn.BatchNorm2d(256),
            nn.Upsample(scale_factor=2),
            nn.Conv2d(256, 128, 3, 1, padding=1),
            nn.ReLU(),
            nn.BatchNorm2d(128),
            nn.Upsample(scale_factor=2),
            nn.Conv2d(128, 64, 3, 1, padding=1),
            nn.ReLU(),
            nn.BatchNorm2d(64),
            nn.Upsample(scale_factor=2),
            nn.Conv2d(64, 32, 3, 1, padding=1),
            nn.ReLU(),
            nn.BatchNorm2d(32),
            nn.Upsample(scale_factor=2),
            nn.Conv2d(32, 16, 3, 1, padding=1),
            nn.ReLU(),
            nn.BatchNorm2d(16),
            nn.Upsample(scale_factor=2),
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



