in options/train_options.py [0:0]
def add_model_parameters(self):
model_params = self.parser.add_argument_group("model")
model_params.add_argument(
"--model_type",
type=str,
default="zbuffer_pts",
choices=(
"zbuffer_pts",
"deepvoxels",
"viewappearance",
"tatarchenko",
),
help='Model to be used.'
)
model_params.add_argument(
"--refine_model_type", type=str, default="unet",
help="Model to be used for the refinement network and the feature encoder."
)
model_params.add_argument(
"--accumulation",
type=str,
default="wsum",
choices=("wsum", "wsumnorm", "alphacomposite"),
help="Method for accumulating points in the z-buffer. Three choices: wsum (weighted sum), wsumnorm (normalised weighted sum), alpha composite (alpha compositing)"
)
model_params.add_argument(
"--depth_predictor_type",
type=str,
default="unet",
choices=("unet", "hourglass", "true_hourglass"),
help='Model for predicting depth'
)
model_params.add_argument(
"--splatter",
type=str,
default="xyblending",
choices=("xyblending"),
)
model_params.add_argument("--rad_pow", type=int, default=2,
help='Exponent to raise the radius to when computing distance (default is euclidean, when rad_pow=2). ')
model_params.add_argument("--num_views", type=int, default=2,
help='Number of views considered per input image (inlcluding input), we only use num_views=2 (1 target view).')
model_params.add_argument(
"--crop_size",
type=int,
default=256,
help="Crop to the width of crop_size (after initially scaling the images to load_size.)",
)
model_params.add_argument(
"--aspect_ratio",
type=float,
default=1.0,
help="The ratio width/height. The final height of the load image will be crop_size/aspect_ratio",
)
model_params.add_argument(
"--norm_D",
type=str,
default="spectralinstance",
help="instance normalization or batch normalization",
)
model_params.add_argument(
"--noise", type=str, default="", choices=("style", "")
)
model_params.add_argument(
"--learn_default_feature", action="store_true", default=True
)
model_params.add_argument(
"--use_camera", action="store_true", default=False
)
model_params.add_argument("--pp_pixel", type=int, default=128,
help='K: the number of points to conisder in the z-buffer.'
)
model_params.add_argument("--tau", type=float, default=1.0,
help='gamma: the power to raise the distance to.'
)
model_params.add_argument(
"--use_gt_depth", action="store_true", default=False
)
model_params.add_argument(
"--train_depth", action="store_true", default=False
)
model_params.add_argument(
"--only_high_res", action="store_true", default=False
)
model_params.add_argument(
"--use_inverse_depth", action="store_true", default=False,
help='If true the depth is sampled as a long tail distribution, else the depth is sampled uniformly. Set to true if the dataset has points that are very far away (e.g. a dataset with landscape images, such as KITTI).'
)
model_params.add_argument(
"--ndf",
type=int,
default=64,
help="# of discrim filters in first conv layer",
)
model_params.add_argument(
"--use_xys", action="store_true", default=False
)
model_params.add_argument(
"--output_nc",
type=int,
default=3,
help="# of output image channels",
)
model_params.add_argument("--norm_G", type=str, default="batch")
model_params.add_argument(
"--ngf",
type=int,
default=64,
help="# of gen filters in first conv layer",
)
model_params.add_argument(
"--radius",
type=float,
default=4,
help="Radius of points to project",
)
model_params.add_argument(
"--voxel_size", type=int, default=64, help="Size of latent voxels"
)
model_params.add_argument(
"--num_upsampling_layers",
choices=("normal", "more", "most"),
default="normal",
help="If 'more', adds upsampling layer between the two middle resnet blocks. "
+ "If 'most', also add one more upsampling + resnet layer at the end of the generator",
)