def __init__()

in models/encoderdecoder.py [0:0]


    def __init__(self, opt):
        super().__init__()

        self.encoder = nn.Sequential(
            nn.Conv2d(3, 16, 3, 2, padding=1),
            nn.LeakyReLU(0.2),
            nn.BatchNorm2d(16),  # 128
            nn.Conv2d(16, 32, 3, 2, padding=1),
            nn.LeakyReLU(0.2),
            nn.BatchNorm2d(32),  # 64
            nn.Conv2d(32, 64, 3, 2, padding=1),
            nn.LeakyReLU(0.2),
            nn.BatchNorm2d(64),  # 32
            nn.Conv2d(64, 128, 3, 2, padding=1),
            nn.LeakyReLU(0.2),
            nn.BatchNorm2d(128),  # 16
            nn.Conv2d(128, 256, 3, 2, padding=1),
            nn.LeakyReLU(0.2),
            nn.BatchNorm2d(256),  # 8
            nn.Conv2d(256, 512, 3, 2, padding=1),
            nn.LeakyReLU(0.2),
            nn.BatchNorm2d(512),  # 4
            CollapseLayer(),
            nn.Linear(8192, 4096),
            nn.LeakyReLU(0.2),
            nn.BatchNorm2d(4096),
            nn.Linear(4096, 4096),
            nn.LeakyReLU(0.2),
            nn.BatchNorm2d(4096),
        )

        self.decoder = nn.Sequential(
            nn.Linear(4096 + 64, 4096),
            nn.LeakyReLU(0.2),
            nn.BatchNorm2d(4096),
            nn.Linear(4096, 4096),
            nn.LeakyReLU(0.2),
            nn.BatchNorm2d(4096),
            UnCollapseLayer(64, 8, 8),
            nn.Conv2d(64, 256, 3, 1, padding=1),
            nn.ReLU(),
            nn.BatchNorm2d(256),
            nn.Upsample(scale_factor=2),
            nn.Conv2d(256, 128, 3, 1, padding=1),
            nn.ReLU(),
            nn.BatchNorm2d(128),
            nn.Upsample(scale_factor=2),
            nn.Conv2d(128, 64, 3, 1, padding=1),
            nn.ReLU(),
            nn.BatchNorm2d(64),
            nn.Upsample(scale_factor=2),
            nn.Conv2d(64, 32, 3, 1, padding=1),
            nn.ReLU(),
            nn.BatchNorm2d(32),
            nn.Upsample(scale_factor=2),
            nn.Conv2d(32, 16, 3, 1, padding=1),
            nn.ReLU(),
            nn.BatchNorm2d(16),
            nn.Upsample(scale_factor=2),
            nn.Conv2d(16, 3, 3, 1, padding=1),
            nn.Tanh(),
        )

        self.angle_transformer = nn.Sequential(
            nn.Linear(12, 64),
            nn.LeakyReLU(0.2),
            nn.BatchNorm1d(64),
            nn.Linear(64, 64),
            nn.LeakyReLU(0.2),
            nn.BatchNorm1d(64),
        )

        self.loss_function = SynthesisLoss(opt=opt)

        self.opt = opt