in models/networks/discriminators.py [0:0]
def init_weights(self, init_type="normal", gain=0.02):
def init_func(m):
classname = m.__class__.__name__
if classname.find("BatchNorm2d") != -1:
if hasattr(m, "weight") and m.weight is not None:
init.normal_(m.weight.data, 1.0, gain)
if hasattr(m, "bias") and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif hasattr(m, "weight") and (
classname.find("Conv") != -1 or classname.find("Linear") != -1
):
if init_type == "normal":
init.normal_(m.weight.data, 0.0, gain)
elif init_type == "xavier":
init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == "xavier_uniform":
init.xavier_uniform_(m.weight.data, gain=1.0)
elif init_type == "kaiming":
init.kaiming_normal_(m.weight.data, a=0, mode="fan_in")
elif init_type == "orthogonal":
init.orthogonal_(m.weight.data, gain=gain)
elif init_type == "none": # uses pytorch's default init method
m.reset_parameters()
else:
raise NotImplementedError(
"initialization method [%s] is not implemented"
% init_type
)
if hasattr(m, "bias") and m.bias is not None:
init.constant_(m.bias.data, 0.0)
self.apply(init_func)
# propagate to children
for m in self.children():
if hasattr(m, "init_weights"):
m.init_weights(init_type, gain)