in experiments/grasp_stability/train.py [0:0]
def load_data(self, K, i):
# K-fold, test the i-th fold, train the rest
# rootDir = "data/test/"
# rootDir = "data/resmid/"
# rootDir = "/media/shawn/Extreme SSD/Code/stability/data/separate"
rootDir = "data/grasp/"
# fileNames = glob.glob(os.path.join(rootDir, "*.h5"))
fileNames = glob.glob(os.path.join(rootDir, "*"))
fileNames = sorted(fileNames)[: args.N]
# print(fileNames)
# Split K fold
N = len(fileNames)
n = N // K
idx = list(range(N))
testIdx = idx[n * i : n * (i + 1)]
trainIdx = list(set(idx) - set(testIdx))
trainFileNames = [fileNames[i] for i in trainIdx]
testFileNames = [fileNames[i] for i in testIdx]
trainTransform = transforms.Compose(
[
transforms.ToPILImage(),
transforms.Resize(256),
transforms.RandomCrop(224),
# transforms.RandomHorizontalFlip(p=0.5),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5,), std=(0.5,)),
AddGaussianNoise(0.0, 0.01),
]
)
trainTransformDepth = transforms.Compose(
[
transforms.ToPILImage(),
transforms.Resize(256),
transforms.RandomCrop(224),
# transforms.RandomHorizontalFlip(p=0.5),
transforms.ToTensor(),
transforms.Normalize(mean=(0.1,), std=(0.2,)),
AddGaussianNoise(0.0, 0.01),
]
)
# Create training dataset and dataloader
trainDataset = GraspingDataset(
trainFileNames,
fields=self.fields,
transform=trainTransform,
transformDepth=trainTransformDepth,
)
trainLoader = torch.utils.data.DataLoader(
trainDataset, batch_size=32, shuffle=False, num_workers=12, pin_memory=True
)
testTransform = transforms.Compose(
[
transforms.ToPILImage(),
transforms.Resize(256),
transforms.RandomCrop(224),
# transforms.RandomHorizontalFlip(p=0.5),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5,), std=(0.5,)),
]
)
testTransformDepth = transforms.Compose(
[
transforms.ToPILImage(),
transforms.Resize(256),
transforms.RandomCrop(224),
# transforms.RandomHorizontalFlip(p=0.5),
transforms.ToTensor(),
transforms.Normalize(mean=(0.1,), std=(0.2,)),
# AddGaussianNoise(0.0, 0.01),
]
)
# Create training dataset and dataloader
testDataset = GraspingDataset(
testFileNames,
fields=self.fields,
transform=testTransform,
transformDepth=testTransformDepth,
)
testLoader = torch.utils.data.DataLoader(
testDataset, batch_size=32, shuffle=False, num_workers=12, pin_memory=True
)
# tot = 0
# suc = 0
# for i, data in enumerate(trainLoader):
# x = {}
# for k in self.fields:
# x[k] = data[k].to(self.device).squeeze(0)
# print(k, x[k].size())
# label = data["label"].squeeze(0)
# print(label.size())
# suc += label.sum().item()
# tot += label.size(0)
# print("ratio", suc / tot)
self.trainLoader, self.testLoader = trainLoader, testLoader