in experiments/grasp_stability/train.py [0:0]
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
fileID = idx // self.numGroup
if fileID != self.dataFileID:
self.dataList = self.load_data(fileID)
self.dataFileID = fileID
sample = {}
data = self.dataList
for k in self.fields:
d = data[k][idx % self.numGroup]
if k in ["tactileColorL", "tactileColorR", "visionColor"]:
d = d[:, :, :3]
# print(k, d.min(), d.max())
if k in ["tactileDepthL", "tactileDepthR", "visionDepth"]:
d = np.dstack([d, d, d])
if k in ["tactileDepthL", "tactileDepthR"]:
d = d / 0.002 * 255
d = np.clip(d, 0, 255).astype(np.uint8)
# print("depth min", d.min(), "max", d.max())
if k in ["visionDepth"]:
d = (d * 255).astype(np.uint8)
if k in [
"tactileColorL",
"tactileColorR",
"visionColor",
"visionDepth",
]:
if self.transform:
d = self.transform(d)
if k in [
"tactileDepthL",
"tactileDepthR",
]:
# print("before", d.min(), d.max(), d.mean(), d.std())
d = self.transformDepth(d)
# d = (d + 2) / 0.05
# print("after", d.min(), d.max(), d.mean(), d.std())
sample[k] = d
return sample