in tbsm_data_pytorch.py [0:0]
def build_synthetic_train_or_val(self, out_file):
np.random.seed(123)
fea_sizes = np.fromstring(self.spa_fea_sizes, dtype=int, sep="-")
maxval = np.min(fea_sizes)
num_s = len(fea_sizes)
X_cat = np.random.randint(maxval, size=(num_s, self.total, self.ts_length + 1),
dtype="i4") # 4 byte int
X_int = np.random.uniform(0, 1, size=(1, self.total, self.ts_length + 1))
y = np.random.randint(0, 2, self.total, dtype="i4") # 4 byte int
# saving to compressed numpy file
if not path.exists(out_file):
np.savez_compressed(
out_file,
X_cat=X_cat,
X_int=X_int,
y=y,
)
return