in torchbeast/monobeast.py [0:0]
def train(flags): # pylint: disable=too-many-branches, too-many-statements
if flags.xpid is None:
flags.xpid = "torchbeast-%s" % time.strftime("%Y%m%d-%H%M%S")
plogger = file_writer.FileWriter(
xpid=flags.xpid, xp_args=flags.__dict__, rootdir=flags.savedir
)
checkpointpath = os.path.expandvars(
os.path.expanduser("%s/%s/%s" % (flags.savedir, flags.xpid, "model.tar"))
)
if flags.num_buffers is None: # Set sensible default for num_buffers.
flags.num_buffers = max(2 * flags.num_actors, flags.batch_size)
if flags.num_actors >= flags.num_buffers:
raise ValueError("num_buffers should be larger than num_actors")
if flags.num_buffers < flags.batch_size:
raise ValueError("num_buffers should be larger than batch_size")
T = flags.unroll_length
B = flags.batch_size
flags.device = None
if not flags.disable_cuda and torch.cuda.is_available():
logging.info("Using CUDA.")
flags.device = torch.device("cuda")
else:
logging.info("Not using CUDA.")
flags.device = torch.device("cpu")
env = create_env(flags)
model = Net(env.observation_space.shape, env.action_space.n, flags.use_lstm)
buffers = create_buffers(flags, env.observation_space.shape, model.num_actions)
model.share_memory()
# Add initial RNN state.
initial_agent_state_buffers = []
for _ in range(flags.num_buffers):
state = model.initial_state(batch_size=1)
for t in state:
t.share_memory_()
initial_agent_state_buffers.append(state)
actor_processes = []
ctx = mp.get_context("fork")
free_queue = ctx.SimpleQueue()
full_queue = ctx.SimpleQueue()
for i in range(flags.num_actors):
actor = ctx.Process(
target=act,
args=(
flags,
i,
free_queue,
full_queue,
model,
buffers,
initial_agent_state_buffers,
),
)
actor.start()
actor_processes.append(actor)
learner_model = Net(
env.observation_space.shape, env.action_space.n, flags.use_lstm
).to(device=flags.device)
optimizer = torch.optim.RMSprop(
learner_model.parameters(),
lr=flags.learning_rate,
momentum=flags.momentum,
eps=flags.epsilon,
alpha=flags.alpha,
)
def lr_lambda(epoch):
return 1 - min(epoch * T * B, flags.total_steps) / flags.total_steps
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
logger = logging.getLogger("logfile")
stat_keys = [
"total_loss",
"mean_episode_return",
"pg_loss",
"baseline_loss",
"entropy_loss",
]
logger.info("# Step\t%s", "\t".join(stat_keys))
step, stats = 0, {}
def batch_and_learn(i, lock=threading.Lock()):
"""Thread target for the learning process."""
nonlocal step, stats
timings = prof.Timings()
while step < flags.total_steps:
timings.reset()
batch, agent_state = get_batch(
flags,
free_queue,
full_queue,
buffers,
initial_agent_state_buffers,
timings,
)
stats = learn(
flags, model, learner_model, batch, agent_state, optimizer, scheduler
)
timings.time("learn")
with lock:
to_log = dict(step=step)
to_log.update({k: stats[k] for k in stat_keys})
plogger.log(to_log)
step += T * B
if i == 0:
logging.info("Batch and learn: %s", timings.summary())
for m in range(flags.num_buffers):
free_queue.put(m)
threads = []
for i in range(flags.num_learner_threads):
thread = threading.Thread(
target=batch_and_learn, name="batch-and-learn-%d" % i, args=(i,)
)
thread.start()
threads.append(thread)
def checkpoint():
if flags.disable_checkpoint:
return
logging.info("Saving checkpoint to %s", checkpointpath)
torch.save(
{
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"scheduler_state_dict": scheduler.state_dict(),
"flags": vars(flags),
},
checkpointpath,
)
timer = timeit.default_timer
try:
last_checkpoint_time = timer()
while step < flags.total_steps:
start_step = step
start_time = timer()
time.sleep(5)
if timer() - last_checkpoint_time > 10 * 60: # Save every 10 min.
checkpoint()
last_checkpoint_time = timer()
sps = (step - start_step) / (timer() - start_time)
if stats.get("episode_returns", None):
mean_return = (
"Return per episode: %.1f. " % stats["mean_episode_return"]
)
else:
mean_return = ""
total_loss = stats.get("total_loss", float("inf"))
logging.info(
"Steps %i @ %.1f SPS. Loss %f. %sStats:\n%s",
step,
sps,
total_loss,
mean_return,
pprint.pformat(stats),
)
except KeyboardInterrupt:
return # Try joining actors then quit.
else:
for thread in threads:
thread.join()
logging.info("Learning finished after %d steps.", step)
finally:
for _ in range(flags.num_actors):
free_queue.put(None)
for actor in actor_processes:
actor.join(timeout=1)
checkpoint()
plogger.close()