def _generate_batch()

in torchrec/datasets/random.py [0:0]


    def _generate_batch(self) -> Batch:
        if self.hash_sizes is None:
            # pyre-ignore[28]
            values = torch.randint(
                high=self.hash_size,
                size=(self._num_ids_in_batch,),
                generator=self.generator,
            )
        else:
            values = (
                torch.rand(
                    self._num_ids_in_batch,
                    generator=self.generator,
                )
                * none_throws(self.max_values)
            ).type(torch.LongTensor)
        sparse_features = KeyedJaggedTensor.from_offsets_sync(
            keys=self.keys,
            values=values,
            offsets=torch.tensor(
                list(
                    range(
                        0,
                        self._num_ids_in_batch + 1,
                        self.ids_per_feature,
                    )
                ),
                dtype=torch.int32,
            ),
        )

        dense_features = torch.randn(
            self.batch_size,
            self.num_dense,
            generator=self.generator,
        )
        # pyre-ignore[28]
        labels = torch.randint(
            low=0,
            high=2,
            size=(self.batch_size,),
            generator=self.generator,
        )

        batch = Batch(
            dense_features=dense_features,
            sparse_features=sparse_features,
            labels=labels,
        )
        return batch