in uimnet/evaluation/oodomain.py [0:0]
def stack_tables_measurements(ood_results:List[List[Dict]]):
# Collect records
stacked = []
for workers_results in ood_results:
# Getting train and eval_cfg
train_cfg = [el.pop('train_cfg') for el in workers_results][0]
eval_cfg = [el.pop('eval_cfg') for el in workers_results][0]
# measurements are dict of tensors
op = functools.partial(torch.cat, dim=0)
valid_tables = utils.map_dict([el['valid_tables'] for el in workers_results], op=op)
test_tables = utils.map_dict([el['test_tables'] for el in workers_results], op=op)
valid_measurements = utils.map_dict([el['valid_measurements'] for el in workers_results], op=op)
test_measurements = utils.map_dict([el['test_measurements'] for el in workers_results], op=op)
stacked += [dict(
train_cfg=train_cfg,
eval_cfg=eval_cfg,
valid_tables=valid_tables,
test_tables=test_tables,
valid_measurements=valid_measurements,
test_measurements=test_measurements,
)]
return stacked