ubteacher/engine/trainer.py [155:179]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    @classmethod
    def build_evaluator(cls, cfg, dataset_name, output_folder=None):
        if output_folder is None:
            output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
        evaluator_list = []
        evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type

        if evaluator_type == "coco":
            evaluator_list.append(COCOEvaluator(
                dataset_name, output_dir=output_folder))
        elif evaluator_type == "pascal_voc":
            return PascalVOCDetectionEvaluator(dataset_name)
        if len(evaluator_list) == 0:
            raise NotImplementedError(
                "no Evaluator for the dataset {} with the type {}".format(
                    dataset_name, evaluator_type
                )
            )
        elif len(evaluator_list) == 1:
            return evaluator_list[0]

        return DatasetEvaluators(evaluator_list)

    @classmethod
    def build_train_loader(cls, cfg):
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



ubteacher/engine/trainer.py [342:366]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    @classmethod
    def build_evaluator(cls, cfg, dataset_name, output_folder=None):
        if output_folder is None:
            output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
        evaluator_list = []
        evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type

        if evaluator_type == "coco":
            evaluator_list.append(COCOEvaluator(
                dataset_name, output_dir=output_folder))
        elif evaluator_type == "pascal_voc":
            return PascalVOCDetectionEvaluator(dataset_name)
        if len(evaluator_list) == 0:
            raise NotImplementedError(
                "no Evaluator for the dataset {} with the type {}".format(
                    dataset_name, evaluator_type
                )
            )
        elif len(evaluator_list) == 1:
            return evaluator_list[0]

        return DatasetEvaluators(evaluator_list)

    @classmethod
    def build_train_loader(cls, cfg):
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



