in lib/utils/misc.py [0:0]
def get_flops_params(model):
"""
Calculating flops and the number of parameters for Conv, FC, and
BatchMatMul.
"""
model_ops = model.net.Proto().op
master_gpu = 'gpu_{}'.format(cfg.ROOT_GPU_ID)
bs = get_batch_size(model.split)
param_ops = []
for idx in range(len(model_ops)):
op_type = model.net.Proto().op[idx].type
op_input = model.net.Proto().op[idx].input[0]
if op_type in ['Conv', 'FC', 'BatchMatMul'] \
and op_input.find(master_gpu) >= 0:
param_ops.append(model.net.Proto().op[idx])
num_flops = 0
num_params = 0
for idx in range(len(param_ops)):
op = param_ops[idx]
op_type = op.type
op_inputs = param_ops[idx].input
op_output = param_ops[idx].output[0]
layer_flops = 0
layer_params = 0
correct_factor = 1
if op_type == 'Conv':
for op_input in op_inputs:
if '_w' in op_input:
param_blob = op_input
param_shape = np.array(
workspace.FetchBlob(str(param_blob))).shape
layer_params = np.prod(param_shape)
output_shape = np.array(
workspace.FetchBlob(str(op_output))).shape
layer_flops = layer_params * np.prod(output_shape[2:])
if output_shape[0] > bs:
correct_factor = int(float(output_shape[0]) // bs)
layer_flops *= correct_factor
elif op_type == 'FC':
for op_input in op_inputs:
if '_w' in op_input:
param_blob = op_input
param_shape = np.array(
workspace.FetchBlob(str(param_blob))).shape
output_shape = np.array(
workspace.FetchBlob(str(op_output))).shape
layer_params = np.prod(param_shape)
layer_flops = layer_params
if output_shape[0] > bs:
correct_factor = int(float(output_shape[0]) // bs)
layer_flops *= correct_factor
elif op_type == 'BatchMatMul':
if 'grad' in op_inputs[0] or 'grad' in op_inputs[1]:
continue
if 'shared' in op_inputs[0] or 'shared' in op_inputs[1]:
continue
if op.is_gradient_op:
continue
param_shape_a = np.array(
workspace.FetchBlob(str(op_inputs[0]))).shape
param_shape_b = np.array(
workspace.FetchBlob(str(op_inputs[1]))).shape
output_shape = np.array(
workspace.FetchBlob(str(op_output))).shape
correct_factor = output_shape[0] // bs
param_shape_a = param_shape_a[1:]
param_shape_b = param_shape_b[1:]
if op.arg[0].name == 'trans_a':
param_shape_a = param_shape_a[::-1]
elif op.arg[0].name == 'trans_b':
param_shape_b = param_shape_b[::-1]
else:
raise NotImplementedError('trans_a or trans_b')
layer_flops = param_shape_a[0] * param_shape_a[1] \
* param_shape_b[1] * correct_factor
logger.info('layer {} ({}) FLOPs: {:.2f} M PARAMs: {:.2f} K'.format(
op.output[0], correct_factor,
layer_flops / 1e6, layer_params / 1e3))
num_flops += layer_flops
num_params += layer_params
return num_flops, num_params