in lib/datasets/ava.py [0:0]
def _get_data(self):
"""Load frame paths and annotations. """
# Loading frame paths.
list_filenames = [
os.path.join(cfg.AVA.FRAME_LIST_DIR, filename) for filename in (
cfg.AVA.TRAIN_LISTS if (self._split == 'train'
or cfg.GET_TRAIN_LFB)
else cfg.AVA.TEST_LISTS)]
(self._image_paths, _,
self._video_idx_to_name, _) = dataset_helper.load_image_lists(
list_filenames)
# Loading annotations.
if self._lfb_infer_only:
ann_filenames = [
os.path.join(cfg.AVA.ANNOTATION_DIR, filename) for filename in (
cfg.AVA.TRAIN_LFB_BOX_LISTS if cfg.GET_TRAIN_LFB
else cfg.AVA.TEST_LFB_BOX_LISTS)]
else:
ann_filenames = [
os.path.join(cfg.AVA.ANNOTATION_DIR, filename) for filename in (
cfg.AVA.TRAIN_BOX_LISTS if self._split == 'train'
else cfg.AVA.TEST_BOX_LISTS)]
self._boxes_and_labels = load_boxes_and_labels(
ann_filenames,
is_train=(self._split == 'train'),
detect_thresh=self._detect_thresh,
full_eval=self._full_eval)
assert len(self._boxes_and_labels) == len(self._image_paths), \
(len(self._boxes_and_labels), len(self._image_paths))
self._boxes_and_labels = [self._boxes_and_labels[self._video_idx_to_name[i]]
for i in range(len(self._image_paths))]
self._keyframe_indices = get_keyframe_indices(self._boxes_and_labels)
self._num_boxes_used = get_num_boxes_used(
self._keyframe_indices, self._boxes_and_labels)
self.print_summary()