def _get_data()

in lib/datasets/ava.py [0:0]


    def _get_data(self):
        """Load frame paths and annotations. """

        # Loading frame paths.
        list_filenames = [
            os.path.join(cfg.AVA.FRAME_LIST_DIR, filename) for filename in (
                cfg.AVA.TRAIN_LISTS if (self._split == 'train'
                                        or cfg.GET_TRAIN_LFB)
                else cfg.AVA.TEST_LISTS)]

        (self._image_paths, _,
         self._video_idx_to_name, _) = dataset_helper.load_image_lists(
            list_filenames)

        # Loading annotations.
        if self._lfb_infer_only:
            ann_filenames = [
                os.path.join(cfg.AVA.ANNOTATION_DIR, filename) for filename in (
                    cfg.AVA.TRAIN_LFB_BOX_LISTS if cfg.GET_TRAIN_LFB
                    else cfg.AVA.TEST_LFB_BOX_LISTS)]
        else:
            ann_filenames = [
                os.path.join(cfg.AVA.ANNOTATION_DIR, filename) for filename in (
                    cfg.AVA.TRAIN_BOX_LISTS if self._split == 'train'
                    else cfg.AVA.TEST_BOX_LISTS)]

        self._boxes_and_labels = load_boxes_and_labels(
            ann_filenames,
            is_train=(self._split == 'train'),
            detect_thresh=self._detect_thresh,
            full_eval=self._full_eval)

        assert len(self._boxes_and_labels) == len(self._image_paths), \
            (len(self._boxes_and_labels), len(self._image_paths))

        self._boxes_and_labels = [self._boxes_and_labels[self._video_idx_to_name[i]]
                                  for i in range(len(self._image_paths))]

        self._keyframe_indices = get_keyframe_indices(self._boxes_and_labels)
        self._num_boxes_used = get_num_boxes_used(
            self._keyframe_indices, self._boxes_and_labels)

        self.print_summary()