process_data/kinetics/create_video_lmdb.py [85:115]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                tensor_protos.SerializeToString()
            )
            index = index + 1
            total_size = total_size + len(video_data) + sys.getsizeof(int)
    print(
        "Done writing {} clips into database with a total size of {}".format(
            len(list_idx),
            total_size
        )
    )
    return total_size


def main():
    parser = argparse.ArgumentParser(
        description="Caffe2: create video lmdb dataset"
    )
    parser.add_argument("--dataset_dir", type=str, default=None,
                        help="Path to write the lmdb database to",
                        required=True)
    parser.add_argument("--list_file", type=str, default=None,
                        help="List file pointing to videos and labels",
                        required=True)

    args = parser.parse_args()
    create_an_lmdb_database(args.list_file, args.dataset_dir)


if __name__ == '__main__':
    workspace.GlobalInit(['caffe2', '--caffe2_log_level=2'])
    main()
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



process_data/kinetics/create_video_lmdb_test_flipcrop.py [94:125]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                        tensor_protos.SerializeToString()
                    )
                    index = index + 1
                    total_size = total_size + len(video_data) + sys.getsizeof(int)

    print(
        "Done writing {} clips into database with a total size of {}".format(
            len(list_idx),
            total_size
        )
    )
    return total_size


def main():
    parser = argparse.ArgumentParser(
        description="Caffe2: create video lmdb dataset"
    )
    parser.add_argument("--dataset_dir", type=str, default=None,
                        help="Path to write the lmdb database to",
                        required=True)
    parser.add_argument("--list_file", type=str, default=None,
                        help="List file pointing to videos and labels",
                        required=True)

    args = parser.parse_args()
    create_an_lmdb_database(args.list_file, args.dataset_dir)


if __name__ == '__main__':
    workspace.GlobalInit(['caffe2', '--caffe2_log_level=2'])
    main()
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



