def get_flops_params()

in lib/utils/misc.py [0:0]


def get_flops_params(model):
    model_ops = model.net.Proto().op
    master_gpu = 'gpu_{}'.format(cfg.ROOT_GPU_ID)
    param_ops = []
    for idx in range(len(model_ops)):
        op_type = model.net.Proto().op[idx].type
        op_input = model.net.Proto().op[idx].input[0]
        if op_type in ['Conv', 'FC', 'BatchMatMul'] and op_input.find(master_gpu) >= 0:
            param_ops.append(model.net.Proto().op[idx])

    num_flops = 0
    num_params = 0
    for idx in range(len(param_ops)):
        op = param_ops[idx]
        op_type = op.type
        op_inputs = param_ops[idx].input
        op_output = param_ops[idx].output[0]
        layer_flops = 0
        layer_params = 0
        if op_type == 'Conv':
            for op_input in op_inputs:
                if '_w' in op_input:
                    param_blob = op_input
                    param_shape = np.array(
                        workspace.FetchBlob(str(param_blob))).shape
                    layer_params = np.prod(param_shape)
                    output_shape = np.array(
                        workspace.FetchBlob(str(op_output))).shape
                    layer_flops = layer_params * np.prod(output_shape[2:])
        elif op_type == 'FC':
            for op_input in op_inputs:
                if '_w' in op_input:
                    param_blob = op_input
                    param_shape = np.array(
                        workspace.FetchBlob(str(param_blob))).shape
                    layer_params = np.prod(param_shape)
                    layer_flops = layer_params
        elif op_type == 'BatchMatMul':
            blob_params = []
            for op_input in op_inputs:
                param_shape = np.array(workspace.FetchBlob(str(op_input))).shape
                blob_params.append(param_shape[1])
                blob_params.append(param_shape[2])
            if 'grad' in op_inputs[0] or 'grad' in op_inputs[1]:
                continue
            if 'shared' in op_inputs[0] or 'shared' in op_inputs[1]:
                continue
            blob_params = np.array(blob_params)
            blob_params = np.unique(blob_params)
            if len(blob_params) == 3:
                layer_flops = blob_params[0] * blob_params[1] * blob_params[2]
            elif len(blob_params) == 1:
                layer_flops = blob_params[0] * blob_params[0] * blob_params[0]
            else:
                layer_flops = 0
                print('confused with matmul dimensions, ignore it for now')

        num_flops += layer_flops
        num_params += layer_params
    return num_flops, num_params