vilbert/datasets/gqa_dataset.py [139:253]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            self.tokenize(max_seq_length)
            self.tensorize()
            cPickle.dump(self.entries, open(cache_path, "wb"))
        else:
            logger.info("Loading from %s" % cache_path)
            self.entries = cPickle.load(open(cache_path, "rb"))

    def tokenize(self, max_length=16):
        """Tokenizes the questions.

        This will add q_token in each entry of the dataset.
        -1 represent nil, and should be treated as padding_index in embedding
        """
        for entry in self.entries:
            # tokens = self._tokenizer.tokenize(entry["question"])
            # tokens = ["[CLS]"] + tokens + ["[SEP]"]

            # tokens = [
            #     self._tokenizer.vocab.get(w, self._tokenizer.vocab["[UNK]"])
            #     for w in tokens
            # ]

            tokens = self._tokenizer.encode(entry["question"])
            tokens = tokens[: max_length - 2]
            tokens = self._tokenizer.add_special_tokens_single_sentence(tokens)

            segment_ids = [0] * len(tokens)
            input_mask = [1] * len(tokens)

            if len(tokens) < max_length:
                # Note here we pad in front of the sentence
                padding = [self._padding_index] * (max_length - len(tokens))
                tokens = tokens + padding
                input_mask += padding
                segment_ids += padding

            assert_eq(len(tokens), max_length)
            entry["q_token"] = tokens
            entry["q_input_mask"] = input_mask
            entry["q_segment_ids"] = segment_ids

    def tensorize(self):

        for entry in self.entries:
            question = torch.from_numpy(np.array(entry["q_token"]))
            entry["q_token"] = question

            q_input_mask = torch.from_numpy(np.array(entry["q_input_mask"]))
            entry["q_input_mask"] = q_input_mask

            q_segment_ids = torch.from_numpy(np.array(entry["q_segment_ids"]))
            entry["q_segment_ids"] = q_segment_ids

            if "test" not in self.split:
                answer = entry["answer"]
                labels = np.array(answer["labels"])
                scores = np.array(answer["scores"], dtype=np.float32)
                if len(labels):
                    labels = torch.from_numpy(labels)
                    scores = torch.from_numpy(scores)
                    entry["answer"]["labels"] = labels
                    entry["answer"]["scores"] = scores
                else:
                    entry["answer"]["labels"] = None
                    entry["answer"]["scores"] = None

    def __getitem__(self, index):
        entry = self.entries[index]
        image_id = entry["image_id"]
        question_id = entry["question_id"]
        features, num_boxes, boxes, _ = self._image_features_reader[image_id]

        mix_num_boxes = min(int(num_boxes), self._max_region_num)
        mix_boxes_pad = np.zeros((self._max_region_num, 5))
        mix_features_pad = np.zeros((self._max_region_num, 2048))

        image_mask = [1] * (int(mix_num_boxes))
        while len(image_mask) < self._max_region_num:
            image_mask.append(0)

        mix_boxes_pad[:mix_num_boxes] = boxes[:mix_num_boxes]
        mix_features_pad[:mix_num_boxes] = features[:mix_num_boxes]

        features = torch.tensor(mix_features_pad).float()
        image_mask = torch.tensor(image_mask).long()
        spatials = torch.tensor(mix_boxes_pad).float()

        question = entry["q_token"]
        input_mask = entry["q_input_mask"]
        segment_ids = entry["q_segment_ids"]

        co_attention_mask = torch.zeros((self._max_region_num, self._max_seq_length))
        target = torch.zeros(self.num_labels)

        if "test" not in self.split:
            answer = entry["answer"]
            labels = answer["labels"]
            scores = answer["scores"]
            if labels is not None:
                target.scatter_(0, labels, scores)

        return (
            features,
            spatials,
            image_mask,
            question,
            target,
            input_mask,
            segment_ids,
            co_attention_mask,
            question_id,
        )

    def __len__(self):
        return len(self.entries)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



vilbert/datasets/guesswhat_dataset.py [99:213]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            self.tokenize(max_seq_length)
            self.tensorize()
            cPickle.dump(self.entries, open(cache_path, "wb"))
        else:
            logger.info("Loading from %s" % cache_path)
            self.entries = cPickle.load(open(cache_path, "rb"))

    def tokenize(self, max_length=16):
        """Tokenizes the questions.

        This will add q_token in each entry of the dataset.
        -1 represent nil, and should be treated as padding_index in embedding
        """
        for entry in self.entries:
            # tokens = self._tokenizer.tokenize(entry["question"])
            # tokens = ["[CLS]"] + tokens + ["[SEP]"]

            # tokens = [
            #     self._tokenizer.vocab.get(w, self._tokenizer.vocab["[UNK]"])
            #     for w in tokens
            # ]
            tokens = self._tokenizer.encode(entry["question"])
            tokens = tokens[: max_length - 2]
            tokens = self._tokenizer.add_special_tokens_single_sentence(tokens)

            # tokens = tokens[:max_length]
            segment_ids = [0] * len(tokens)
            input_mask = [1] * len(tokens)

            if len(tokens) < max_length:
                # Note here we pad in front of the sentence
                padding = [self._padding_index] * (max_length - len(tokens))
                tokens = tokens + padding
                input_mask += padding
                segment_ids += padding

            assert_eq(len(tokens), max_length)
            entry["q_token"] = tokens
            entry["q_input_mask"] = input_mask
            entry["q_segment_ids"] = segment_ids

    def tensorize(self):

        for entry in self.entries:
            question = torch.from_numpy(np.array(entry["q_token"]))
            entry["q_token"] = question

            q_input_mask = torch.from_numpy(np.array(entry["q_input_mask"]))
            entry["q_input_mask"] = q_input_mask

            q_segment_ids = torch.from_numpy(np.array(entry["q_segment_ids"]))
            entry["q_segment_ids"] = q_segment_ids

            if "test" not in self.split:
                answer = entry["answer"]
                labels = np.array(answer["labels"])
                scores = np.array(answer["scores"], dtype=np.float32)
                if len(labels):
                    labels = torch.from_numpy(labels)
                    scores = torch.from_numpy(scores)
                    entry["answer"]["labels"] = labels
                    entry["answer"]["scores"] = scores
                else:
                    entry["answer"]["labels"] = None
                    entry["answer"]["scores"] = None

    def __getitem__(self, index):
        entry = self.entries[index]
        image_id = entry["image_id"]
        question_id = entry["question_id"]
        features, num_boxes, boxes, _ = self._image_features_reader[image_id]

        mix_num_boxes = min(int(num_boxes), self._max_region_num)
        mix_boxes_pad = np.zeros((self._max_region_num, 5))
        mix_features_pad = np.zeros((self._max_region_num, 2048))

        image_mask = [1] * (int(mix_num_boxes))
        while len(image_mask) < self._max_region_num:
            image_mask.append(0)

        mix_boxes_pad[:mix_num_boxes] = boxes[:mix_num_boxes]
        mix_features_pad[:mix_num_boxes] = features[:mix_num_boxes]

        features = torch.tensor(mix_features_pad).float()
        image_mask = torch.tensor(image_mask).long()
        spatials = torch.tensor(mix_boxes_pad).float()

        question = entry["q_token"]
        input_mask = entry["q_input_mask"]
        segment_ids = entry["q_segment_ids"]

        co_attention_mask = torch.zeros((self._max_region_num, self._max_seq_length))
        target = torch.zeros(self.num_labels)

        if "test" not in self.split:
            answer = entry["answer"]
            labels = answer["labels"]
            scores = answer["scores"]
            if labels is not None:
                target.scatter_(0, labels, scores)

        return (
            features,
            spatials,
            image_mask,
            question,
            target,
            input_mask,
            segment_ids,
            co_attention_mask,
            question_id,
        )

    def __len__(self):
        return len(self.entries)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



