def __getitem__()

in vilbert/datasets/_image_features_reader.py [0:0]


    def __getitem__(self, image_id):
        image_id = str(image_id).encode()
        index = self._image_ids.index(image_id)
        if self._in_memory:
            # Load features during first epoch, all not loaded together as it
            # has a slow start.
            if self.features[index] is not None:
                features = self.features[index]
                num_boxes = self.num_boxes[index]
                image_location = self.boxes[index]
                image_location_ori = self.boxes_ori[index]
            else:
                with self.env.begin(write=False) as txn:
                    item = pickle.loads(txn.get(image_id))
                    image_id = item["image_id"]
                    image_h = int(item["image_h"])
                    image_w = int(item["image_w"])
                    # num_boxes = int(item['num_boxes'])

                    # features = np.frombuffer(base64.b64decode(item["features"]), dtype=np.float32).reshape(num_boxes, 2048)
                    # boxes = np.frombuffer(base64.b64decode(item['boxes']), dtype=np.float32).reshape(num_boxes, 4)
                    features = item["features"].reshape(-1, 2048)
                    boxes = item["boxes"].reshape(-1, 4)

                    num_boxes = features.shape[0]

                    g_feat = np.sum(features, axis=0) / num_boxes
                    num_boxes = num_boxes + 1

                    features = np.concatenate(
                        [np.expand_dims(g_feat, axis=0), features], axis=0
                    )
                    self.features[index] = features

                    image_location = np.zeros((boxes.shape[0], 5), dtype=np.float32)
                    image_location[:, :4] = boxes
                    image_location[:, 4] = (
                        (image_location[:, 3] - image_location[:, 1])
                        * (image_location[:, 2] - image_location[:, 0])
                        / (float(image_w) * float(image_h))
                    )

                    image_location_ori = copy.deepcopy(image_location)

                    image_location[:, 0] = image_location[:, 0] / float(image_w)
                    image_location[:, 1] = image_location[:, 1] / float(image_h)
                    image_location[:, 2] = image_location[:, 2] / float(image_w)
                    image_location[:, 3] = image_location[:, 3] / float(image_h)

                    g_location = np.array([0, 0, 1, 1, 1])
                    image_location = np.concatenate(
                        [np.expand_dims(g_location, axis=0), image_location], axis=0
                    )
                    self.boxes[index] = image_location

                    g_location_ori = np.array(
                        [0, 0, image_w, image_h, image_w * image_h]
                    )
                    image_location_ori = np.concatenate(
                        [np.expand_dims(g_location_ori, axis=0), image_location_ori],
                        axis=0,
                    )
                    self.boxes_ori[index] = image_location_ori
                    self.num_boxes[index] = num_boxes
        else:
            # Read chunk from file everytime if not loaded in memory.
            with self.env.begin(write=False) as txn:
                item = pickle.loads(txn.get(image_id))
                image_id = item["image_id"]
                image_h = int(item["image_h"])
                image_w = int(item["image_w"])
                # num_boxes = int(item['num_boxes'])

                # features = np.frombuffer(base64.b64decode(item["features"]), dtype=np.float32).reshape(num_boxes, 2048)
                # boxes = np.frombuffer(base64.b64decode(item['boxes']), dtype=np.float32).reshape(num_boxes, 4)
                features = item["features"].reshape(-1, 2048)
                boxes = item["boxes"].reshape(-1, 4)

                num_boxes = features.shape[0]
                g_feat = np.sum(features, axis=0) / num_boxes
                num_boxes = num_boxes + 1
                features = np.concatenate(
                    [np.expand_dims(g_feat, axis=0), features], axis=0
                )

                image_location = np.zeros((boxes.shape[0], 5), dtype=np.float32)
                image_location[:, :4] = boxes
                image_location[:, 4] = (
                    (image_location[:, 3] - image_location[:, 1])
                    * (image_location[:, 2] - image_location[:, 0])
                    / (float(image_w) * float(image_h))
                )

                image_location_ori = copy.deepcopy(image_location)
                image_location[:, 0] = image_location[:, 0] / float(image_w)
                image_location[:, 1] = image_location[:, 1] / float(image_h)
                image_location[:, 2] = image_location[:, 2] / float(image_w)
                image_location[:, 3] = image_location[:, 3] / float(image_h)

                g_location = np.array([0, 0, 1, 1, 1])
                image_location = np.concatenate(
                    [np.expand_dims(g_location, axis=0), image_location], axis=0
                )

                g_location_ori = np.array([0, 0, image_w, image_h, image_w * image_h])
                image_location_ori = np.concatenate(
                    [np.expand_dims(g_location_ori, axis=0), image_location_ori], axis=0
                )

        return features, num_boxes, image_location, image_location_ori