def main()

in eval_tasks.py [0:0]


def main():
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--bert_model",
        default="bert-base-uncased",
        type=str,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.",
    )
    parser.add_argument(
        "--from_pretrained",
        default="bert-base-uncased",
        type=str,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.",
    )
    parser.add_argument(
        "--output_dir",
        default="results",
        type=str,
        help="The output directory where the model checkpoints will be written.",
    )
    parser.add_argument(
        "--config_file",
        default="config/bert_config.json",
        type=str,
        help="The config file which specified the model details.",
    )
    parser.add_argument(
        "--no_cuda", action="store_true", help="Whether not to use CUDA when available"
    )
    parser.add_argument(
        "--do_lower_case",
        default=True,
        type=bool,
        help="Whether to lower case the input text. True for uncased models, False for cased models.",
    )
    parser.add_argument(
        "--local_rank",
        type=int,
        default=-1,
        help="local_rank for distributed training on gpus",
    )
    parser.add_argument(
        "--seed", type=int, default=42, help="random seed for initialization"
    )
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit float precision instead of 32-bit",
    )
    parser.add_argument(
        "--loss_scale",
        type=float,
        default=0,
        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n",
    )
    parser.add_argument(
        "--num_workers",
        type=int,
        default=16,
        help="Number of workers in the dataloader.",
    )
    parser.add_argument(
        "--save_name", default="", type=str, help="save name for training."
    )
    parser.add_argument(
        "--use_chunk",
        default=0,
        type=float,
        help="whether use chunck for parallel training.",
    )
    parser.add_argument(
        "--batch_size", default=30, type=int, help="what is the batch size?"
    )
    parser.add_argument(
        "--tasks", default="", type=str, help="1-2-3... training task separate by -"
    )
    parser.add_argument(
        "--in_memory",
        default=False,
        type=bool,
        help="whether use chunck for parallel training.",
    )
    parser.add_argument(
        "--baseline", action="store_true", help="whether use single stream baseline."
    )
    parser.add_argument("--split", default="", type=str, help="which split to use.")
    parser.add_argument(
        "--dynamic_attention",
        action="store_true",
        help="whether use dynamic attention.",
    )
    parser.add_argument(
        "--clean_train_sets",
        default=True,
        type=bool,
        help="whether clean train sets for multitask data.",
    )
    parser.add_argument(
        "--visual_target",
        default=0,
        type=int,
        help="which target to use for visual branch. \
        0: soft label, \
        1: regress the feature, \
        2: NCE loss.",
    )
    parser.add_argument(
        "--task_specific_tokens",
        action="store_true",
        help="whether to use task specific tokens for the multi-task learning.",
    )

    args = parser.parse_args()
    with open("vilbert_tasks.yml", "r") as f:
        task_cfg = edict(yaml.safe_load(f))

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    if args.baseline:
        from pytorch_transformers.modeling_bert import BertConfig
        from vilbert.basebert import BaseBertForVLTasks
    else:
        from vilbert.vilbert import BertConfig
        from vilbert.vilbert import VILBertForVLTasks

    task_names = []
    for i, task_id in enumerate(args.tasks.split("-")):
        task = "TASK" + task_id
        name = task_cfg[task]["name"]
        task_names.append(name)

    if args.task_specific_tokens:
        config.task_specific_tokens = True

    # timeStamp = '-'.join(task_names) + '_' + args.config_file.split('/')[1].split('.')[0]
    timeStamp = args.from_pretrained.split("/")[-1] + "-" + args.save_name
    savePath = os.path.join(args.output_dir, timeStamp)
    config = BertConfig.from_json_file(args.config_file)

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device(
            "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu"
        )
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend="nccl")

    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
            device, n_gpu, bool(args.local_rank != -1), args.fp16
        )
    )

    default_gpu = False
    if dist.is_available() and args.local_rank != -1:
        rank = dist.get_rank()
        if rank == 0:
            default_gpu = True
    else:
        default_gpu = True

    if default_gpu and not os.path.exists(savePath):
        os.makedirs(savePath)

    task_batch_size, task_num_iters, task_ids, task_datasets_val, task_dataloader_val = LoadDatasetEval(
        args, task_cfg, args.tasks.split("-")
    )

    tbLogger = utils.tbLogger(
        timeStamp,
        savePath,
        task_names,
        task_ids,
        task_num_iters,
        1,
        save_logger=False,
        txt_name="eval.txt",
    )
    num_labels = max([dataset.num_labels for dataset in task_datasets_val.values()])

    if args.dynamic_attention:
        config.dynamic_attention = True
    if "roberta" in args.bert_model:
        config.model = "roberta"

    if args.visual_target == 0:
        config.v_target_size = 1601
        config.visual_target = args.visual_target
    else:
        config.v_target_size = 2048
        config.visual_target = args.visual_target

    if args.task_specific_tokens:
        config.task_specific_tokens = True

    if args.baseline:
        model = BaseBertForVLTasks.from_pretrained(
            args.from_pretrained,
            config=config,
            num_labels=num_labels,
            default_gpu=default_gpu,
        )
    else:
        model = VILBertForVLTasks.from_pretrained(
            args.from_pretrained,
            config=config,
            num_labels=num_labels,
            default_gpu=default_gpu,
        )

    task_losses = LoadLosses(args, task_cfg, args.tasks.split("-"))
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )
        model = DDP(model, delay_allreduce=True)

    elif n_gpu > 1:
        model = nn.DataParallel(model)

    print("***** Running evaluation *****")
    print("  Num Iters: ", task_num_iters)
    print("  Batch size: ", task_batch_size)

    model.eval()
    # when run evaluate, we run each task sequentially.
    for task_id in task_ids:
        results = []
        others = []
        for i, batch in enumerate(task_dataloader_val[task_id]):
            loss, score, batch_size, results, others = EvaluatingModel(
                args,
                task_cfg,
                device,
                task_id,
                batch,
                model,
                task_dataloader_val,
                task_losses,
                results,
                others,
            )

            tbLogger.step_val(0, float(loss), float(score), task_id, batch_size, "val")

            sys.stdout.write("%d/%d\r" % (i, len(task_dataloader_val[task_id])))
            sys.stdout.flush()
        # save the result or evaluate the result.
        ave_score = tbLogger.showLossVal(task_id)

        if args.split:
            json_path = os.path.join(savePath, args.split)
        else:
            json_path = os.path.join(savePath, task_cfg[task_id]["val_split"])

        json.dump(results, open(json_path + "_result.json", "w"))
        json.dump(others, open(json_path + "_others.json", "w"))