def __init__()

in vissl/models/trunks/xcit.py [0:0]


    def __init__(self, model_config: AttrDict, model_name: str):
        super().__init__()

        assert model_config.INPUT_TYPE in ["rgb", "bgr"], "Input type not supported"
        trunk_config = copy.deepcopy(model_config.TRUNK.XCIT)

        logging.info("Building model: XCiT from yaml config")
        # Hacky workaround
        trunk_config = AttrDict({k.lower(): v for k, v in trunk_config.items()})
        img_size = trunk_config.image_size
        patch_size = trunk_config.patch_size
        embed_dim = trunk_config.hidden_dim
        depth = trunk_config.num_layers
        num_heads = trunk_config.num_heads
        mlp_ratio = 4.0
        qkv_bias = trunk_config.qkv_bias
        qk_scale = trunk_config.qk_scale
        drop_rate = trunk_config.dropout_rate
        attn_drop_rate = trunk_config.attention_dropout_rate
        drop_path_rate = trunk_config.drop_path_rate
        eta = trunk_config.eta
        tokens_norm = trunk_config.tokens_norm
        norm_layer = partial(nn.LayerNorm, eps=1e-6)
        self.num_features = (
            self.embed_dim
        ) = embed_dim  # num_features for consistency with other models
        self.patch_embed = ConvPatchEmbed(
            img_size=img_size, embed_dim=embed_dim, patch_size=patch_size
        )
        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_drop = nn.Dropout(p=drop_rate)

        dpr = [drop_path_rate for i in range(depth)]
        self.blocks = nn.ModuleList(
            [
                XCABlock(
                    dim=embed_dim,
                    num_heads=num_heads,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_scale=qk_scale,
                    drop=drop_rate,
                    attn_drop=attn_drop_rate,
                    drop_path=dpr[i],
                    norm_layer=norm_layer,
                    num_tokens=num_patches,
                    eta=eta,
                )
                for i in range(depth)
            ]
        )

        cls_attn_layers = 2
        self.cls_attn_blocks = nn.ModuleList(
            [
                ClassAttentionBlock(
                    dim=embed_dim,
                    num_heads=num_heads,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_scale=qk_scale,
                    drop=drop_rate,
                    attn_drop=attn_drop_rate,
                    norm_layer=norm_layer,
                    eta=eta,
                    tokens_norm=tokens_norm,
                )
                for i in range(cls_attn_layers)
            ]
        )
        self.norm = norm_layer(embed_dim)

        self.pos_embeder = PositionalEncodingFourier(dim=embed_dim)
        self.use_pos = True

        # Classifier head
        trunc_normal_(self.cls_token, std=0.02)
        self.apply(self._init_weights)