def __init__()

in vissl/models/trunks/vision_transformer.py [0:0]


    def __init__(self, model_config: AttrDict, model_name: str):
        super().__init__()

        assert model_config.INPUT_TYPE in ["rgb", "bgr"], "Input type not supported"
        trunk_config = copy.deepcopy(model_config.TRUNK.VISION_TRANSFORMERS)

        logging.info("Building model: Vision Transformer from yaml config")
        # Hacky workaround
        trunk_config = AttrDict({k.lower(): v for k, v in trunk_config.items()})

        img_size = trunk_config.image_size
        patch_size = trunk_config.patch_size
        in_chans = 3
        embed_dim = trunk_config.hidden_dim
        depth = trunk_config.num_layers
        num_heads = trunk_config.num_heads
        mlp_ratio = 4.0
        qkv_bias = trunk_config.qkv_bias
        qk_scale = trunk_config.qk_scale
        drop_rate = trunk_config.dropout_rate
        attn_drop_rate = trunk_config.attention_dropout_rate
        drop_path_rate = trunk_config.drop_path_rate
        hybrid_backbone_string = None
        # TODO Implement hybrid backbones
        if "HYBRID" in trunk_config.keys():
            hybrid_backbone_string = trunk_config.HYBRID
        norm_layer = partial(nn.LayerNorm, eps=1e-6)

        self.num_features = (
            self.embed_dim
        ) = embed_dim  # num_features for consistency with other models

        # TODO : Enable Hybrid Backbones
        if hybrid_backbone_string:
            self.patch_embed = globals()[hybrid_backbone_string](
                out_dim=embed_dim, img_size=img_size
            )
        # if hybrid_backbone is not None:
        #     self.patch_embed = HybridEmbed(
        #         hybrid_backbone,
        #         img_size=img_size,
        #         in_chans=in_chans,
        #         embed_dim=embed_dim,
        #     )
        else:
            self.patch_embed = PatchEmbed(
                img_size=img_size,
                patch_size=patch_size,
                in_chans=in_chans,
                embed_dim=embed_dim,
            )
        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
        self.pos_drop = nn.Dropout(p=drop_rate)

        dpr = [
            x.item() for x in torch.linspace(0, drop_path_rate, depth)
        ]  # stochastic depth decay rule
        self.blocks = nn.ModuleList(
            [
                Block(
                    dim=embed_dim,
                    num_heads=num_heads,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_scale=qk_scale,
                    drop=drop_rate,
                    attn_drop=attn_drop_rate,
                    drop_path=dpr[i],
                    norm_layer=norm_layer,
                )
                for i in range(depth)
            ]
        )
        self.norm = norm_layer(embed_dim)

        # NOTE as per official impl, we could have a pre-logits
        # representation dense layer + tanh here
        # self.repr = nn.Linear(embed_dim, representation_size)
        # self.repr_act = nn.Tanh()

        trunc_normal_(self.pos_embed, std=0.02)
        trunc_normal_(self.cls_token, std=0.02)
        self.apply(self._init_weights)