def __init__()

in models/src/wavegrad/linear_modulation.py [0:0]


    def __init__(self, in_channels, out_channels, input_dscaled_by):
        super(FeatureWiseLinearModulation, self).__init__()
        self.signal_conv = torch.nn.Sequential(
            *[
                Conv1dWithInitialization(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                ),
                torch.nn.LeakyReLU(0.2),
            ]
        )
        self.positional_encoding = PositionalEncoding(in_channels)
        self.scale_conv = Conv1dWithInitialization(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=3,
            stride=1,
            padding=1,
        )
        self.shift_conv = Conv1dWithInitialization(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=3,
            stride=1,
            padding=1,
        )