eval.py [97:113]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
MODEL = importlib.import_module(FLAGS.model) # import network module
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
num_input_channel = int(FLAGS.use_color)*3 + int(not FLAGS.no_height)*1

if FLAGS.model == 'boxnet':
    Detector = MODEL.BoxNet
else:
    Detector = MODEL.VoteNet

net = Detector(num_class=DATASET_CONFIG.num_class,
               num_heading_bin=DATASET_CONFIG.num_heading_bin,
               num_size_cluster=DATASET_CONFIG.num_size_cluster,
               mean_size_arr=DATASET_CONFIG.mean_size_arr,
               num_proposal=FLAGS.num_target,
               input_feature_dim=num_input_channel,
               vote_factor=FLAGS.vote_factor,
               sampling=FLAGS.cluster_sampling)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



train.py [148:164]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
MODEL = importlib.import_module(FLAGS.model) # import network module
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
num_input_channel = int(FLAGS.use_color)*3 + int(not FLAGS.no_height)*1

if FLAGS.model == 'boxnet':
    Detector = MODEL.BoxNet
else:
    Detector = MODEL.VoteNet

net = Detector(num_class=DATASET_CONFIG.num_class,
               num_heading_bin=DATASET_CONFIG.num_heading_bin,
               num_size_cluster=DATASET_CONFIG.num_size_cluster,
               mean_size_arr=DATASET_CONFIG.mean_size_arr,
               num_proposal=FLAGS.num_target,
               input_feature_dim=num_input_channel,
               vote_factor=FLAGS.vote_factor,
               sampling=FLAGS.cluster_sampling)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



