in xformers/benchmarks/benchmark_core.py [0:0]
def bench_bmm():
min_run_time = MIN_RUN_TIME
prob = 0.9
device = torch.device("cuda")
results = []
for B, M, K in zip(*SHAPES):
a = torch.rand(B, M, M, device=device)
a[a < prob] = 0
b = torch.rand(B, M, K, device=device)
results.extend(
[
benchmark.Timer(
stmt="bmm(a, b)",
globals={
"a": a,
"b": b,
"bmm": bmm,
},
label="bmm",
sub_label="dense",
description=f"B={B}, M={M}, K={K}",
).blocked_autorange(min_run_time=min_run_time),
]
)
for sputnik, prob in itertools.product([False, True], SPARSITIES):
a = _create_random_sparsity(torch.rand(B, M, M, device=device), prob)
bb = b
if sputnik:
a = SparseCS(a, device)
bb = b
else:
a = a.to_sparse()
results.append(
benchmark.Timer(
stmt="bmm(a, b)",
globals={
"a": a,
"b": bb,
"bmm": bmm,
},
label="bmm",
sub_label=f"sparsity {'sputnik' if sputnik else 'pytorch'}: {prob:0.2f}",
description=f"B={B}, M={M}, K={K}",
).blocked_autorange(min_run_time=min_run_time)
)
compare = benchmark.Compare(results)
compare.print()