at::Tensor spmm_sputnik()

in xformers/components/attention/csrc/cpu/spmm.cpp [36:99]


at::Tensor spmm_sputnik(
    const at::Tensor& b,
    const at::Tensor& row_indices,
    const at::Tensor& values,
    const at::Tensor& row_offsets,
    const at::Tensor& column_indices,
    int64_t m) {
  TORCH_CHECK(b.dim() == 3);
  TORCH_CHECK(values.dim() == 2);
  TORCH_CHECK(b.size(0) == values.size(0));
  TORCH_CHECK(row_indices.dim() == 1);
  TORCH_CHECK(row_offsets.dim() == 1);
  TORCH_CHECK(column_indices.dim() == 1);
  TORCH_CHECK(values.size(1) == column_indices.size(0));

  TORCH_CHECK(!b.is_cuda(), "b must be a CPU tensor");
  TORCH_CHECK(!row_indices.is_cuda(), "row_indices must be a CPU tensor");
  TORCH_CHECK(!values.is_cuda(), "values must be a CPU tensor");
  TORCH_CHECK(!row_offsets.is_cuda(), "row_offsets must be a CPU tensor");
  TORCH_CHECK(!column_indices.is_cuda(), "column_offsets must be a CPU tensor");

  TORCH_CHECK(b.is_contiguous(), "b must be a contiguous tensor");
  TORCH_CHECK(
      row_indices.is_contiguous(), "row_indices must be a contiguous tensor");
  TORCH_CHECK(values.is_contiguous(), "values must be a contiguous tensor");
  TORCH_CHECK(
      row_offsets.is_contiguous(), "row_offsets must be a contiguous tensor");
  TORCH_CHECK(
      column_indices.is_contiguous(),
      "column_offsets must be a contiguous tensor");

  TORCH_CHECK(!b.is_sparse(), "b must be a dense tensor");
  TORCH_CHECK(!row_indices.is_sparse(), "row_indices must be a dense tensor");
  TORCH_CHECK(!values.is_sparse(), "values must be a dense tensor");
  TORCH_CHECK(!row_offsets.is_sparse(), "row_offsets must be a dense tensor");
  TORCH_CHECK(
      !column_indices.is_sparse(), "column_offsets must be a dense tensor");

  int batch = b.size(0);
  int k = b.size(1);
  int n = b.size(2);

  int nonzeros = column_indices.size(0);
  TORCH_CHECK(
      batch == 1 || nonzeros % 4 == 0,
      "If batch size > 1 then number of nonzeros should be a multiple of 4");

  at::Tensor output = at::empty({batch, m, n}, b.options());

  LaunchSpmm(
      m,
      k,
      n,
      nonzeros,
      row_indices.data_ptr<int>(),
      values.data_ptr<float>(),
      row_offsets.data_ptr<int>(),
      column_indices.data_ptr<int>(),
      b.data_ptr<float>(),
      output.data_ptr<float>(),
      batch);

  return output;
}