in xformers/benchmarks/benchmark_triton_layernorm.py [0:0]
def bench_layernorm(backward: bool):
device = torch.device("cuda")
for dtype in [
torch.float16,
torch.float32,
]:
results: Dict[str, Any] = {}
for B, M, K in SHAPES:
a = torch.rand(B, M, K, device=device, dtype=dtype, requires_grad=backward)
# Pytorch layer norn
torch_layernorm = torch.nn.LayerNorm([K]).to(dtype=dtype, device=device)
# pyre-ignore[16]: TODO(T101400990): Pyre did not recognize the
# `FusedLinearNorm` import.
# Fused layernorm equivalent
fused_layernorm = FusedLayerNorm([K]).to(dtype=dtype, device=device)
def torch_step(x):
y = torch_layernorm(x)
if backward:
torch.norm(y).backward()
return y
def triton_step(x):
y = fused_layernorm(x)
if backward:
torch.norm(y).backward()
return y
for testcase in [
TestCase(
torch_step,
"pytorch - fw{}".format("+bw" if backward else ""),
),
TestCase(
triton_step,
"triton - fw{}".format("+bw" if backward else ""),
),
]:
time = triton.testing.do_bench(lambda: testcase.function(a))[0]
key = f"B={B}, M={M}, K={K}"
if key not in results:
results[key] = {}
# Record BW
bandwidth = to_gbs_fw(a, time)
results[key][testcase.name] = f"{bandwidth:.1f}"
pretty_print(results, title="\n --- Type: {} --- ".format(dtype), units="GB/s")
pretty_plot(
results,
title="LayerNorm-FW{}-{}".format("+BW" if backward else "", dtype),
units="GB/s",
dash_key="pytorch",
)