sample.py [62:69]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
	transform = transforms.Compose([
		transforms.Resize(args.crop_size),
		transforms.ToTensor(),
		transforms.Normalize((0.485, 0.456, 0.406),
			(0.229, 0.224, 0.225))])

	with open(args.vocab_path, 'rb') as f:
		vocab = pickle.load(f)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



train.py [26:34]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
	transform = transforms.Compose([
		transforms.Resize(args.crop_size),
		transforms.ToTensor(),
		transforms.Normalize((0.485, 0.456, 0.406),
			(0.229, 0.224, 0.225))])

	# load vocab wrapper
	with open(args.vocab_path, 'rb') as f:
		vocab = pickle.load(f)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



