in Src/Geometry.cpp [222:536]
void DirectX::ComputeGeoSphere(VertexCollection& vertices, IndexCollection& indices, float diameter, size_t tessellation, bool rhcoords)
{
vertices.clear();
indices.clear();
// An undirected edge between two vertices, represented by a pair of indexes into a vertex array.
// Becuse this edge is undirected, (a,b) is the same as (b,a).
using UndirectedEdge = std::pair<uint16_t, uint16_t>;
// Makes an undirected edge. Rather than overloading comparison operators to give us the (a,b)==(b,a) property,
// we'll just ensure that the larger of the two goes first. This'll simplify things greatly.
auto makeUndirectedEdge = [](uint16_t a, uint16_t b) noexcept
{
return std::make_pair(std::max(a, b), std::min(a, b));
};
// Key: an edge
// Value: the index of the vertex which lies midway between the two vertices pointed to by the key value
// This map is used to avoid duplicating vertices when subdividing triangles along edges.
using EdgeSubdivisionMap = std::map<UndirectedEdge, uint16_t>;
static const XMFLOAT3 OctahedronVertices[] =
{
// when looking down the negative z-axis (into the screen)
XMFLOAT3(0, 1, 0), // 0 top
XMFLOAT3(0, 0, -1), // 1 front
XMFLOAT3(1, 0, 0), // 2 right
XMFLOAT3(0, 0, 1), // 3 back
XMFLOAT3(-1, 0, 0), // 4 left
XMFLOAT3(0, -1, 0), // 5 bottom
};
static const uint16_t OctahedronIndices[] =
{
0, 1, 2, // top front-right face
0, 2, 3, // top back-right face
0, 3, 4, // top back-left face
0, 4, 1, // top front-left face
5, 1, 4, // bottom front-left face
5, 4, 3, // bottom back-left face
5, 3, 2, // bottom back-right face
5, 2, 1, // bottom front-right face
};
const float radius = diameter / 2.0f;
// Start with an octahedron; copy the data into the vertex/index collection.
std::vector<XMFLOAT3> vertexPositions(std::begin(OctahedronVertices), std::end(OctahedronVertices));
indices.insert(indices.begin(), std::begin(OctahedronIndices), std::end(OctahedronIndices));
// We know these values by looking at the above index list for the octahedron. Despite the subdivisions that are
// about to go on, these values aren't ever going to change because the vertices don't move around in the array.
// We'll need these values later on to fix the singularities that show up at the poles.
const uint16_t northPoleIndex = 0;
const uint16_t southPoleIndex = 5;
for (size_t iSubdivision = 0; iSubdivision < tessellation; ++iSubdivision)
{
assert(indices.size() % 3 == 0); // sanity
// We use this to keep track of which edges have already been subdivided.
EdgeSubdivisionMap subdividedEdges;
// The new index collection after subdivision.
IndexCollection newIndices;
const size_t triangleCount = indices.size() / 3;
for (size_t iTriangle = 0; iTriangle < triangleCount; ++iTriangle)
{
// For each edge on this triangle, create a new vertex in the middle of that edge.
// The winding order of the triangles we output are the same as the winding order of the inputs.
// Indices of the vertices making up this triangle
uint16_t iv0 = indices[iTriangle * 3 + 0];
uint16_t iv1 = indices[iTriangle * 3 + 1];
uint16_t iv2 = indices[iTriangle * 3 + 2];
// Get the new vertices
XMFLOAT3 v01; // vertex on the midpoint of v0 and v1
XMFLOAT3 v12; // ditto v1 and v2
XMFLOAT3 v20; // ditto v2 and v0
uint16_t iv01; // index of v01
uint16_t iv12; // index of v12
uint16_t iv20; // index of v20
// Function that, when given the index of two vertices, creates a new vertex at the midpoint of those vertices.
auto divideEdge = [&](uint16_t i0, uint16_t i1, XMFLOAT3& outVertex, uint16_t& outIndex)
{
const UndirectedEdge edge = makeUndirectedEdge(i0, i1);
// Check to see if we've already generated this vertex
auto it = subdividedEdges.find(edge);
if (it != subdividedEdges.end())
{
// We've already generated this vertex before
outIndex = it->second; // the index of this vertex
outVertex = vertexPositions[outIndex]; // and the vertex itself
}
else
{
// Haven't generated this vertex before: so add it now
// outVertex = (vertices[i0] + vertices[i1]) / 2
XMStoreFloat3(
&outVertex,
XMVectorScale(
XMVectorAdd(XMLoadFloat3(&vertexPositions[i0]), XMLoadFloat3(&vertexPositions[i1])),
0.5f
)
);
outIndex = static_cast<uint16_t>(vertexPositions.size());
CheckIndexOverflow(outIndex);
vertexPositions.push_back(outVertex);
// Now add it to the map.
auto entry = std::make_pair(edge, outIndex);
subdividedEdges.insert(entry);
}
};
// Add/get new vertices and their indices
divideEdge(iv0, iv1, v01, iv01);
divideEdge(iv1, iv2, v12, iv12);
divideEdge(iv0, iv2, v20, iv20);
// Add the new indices. We have four new triangles from our original one:
// v0
// o
// /a\
// v20 o---o v01
// /b\c/d\
// v2 o---o---o v1
// v12
const uint16_t indicesToAdd[] =
{
iv0, iv01, iv20, // a
iv20, iv12, iv2, // b
iv20, iv01, iv12, // c
iv01, iv1, iv12, // d
};
newIndices.insert(newIndices.end(), std::begin(indicesToAdd), std::end(indicesToAdd));
}
indices = std::move(newIndices);
}
// Now that we've completed subdivision, fill in the final vertex collection
vertices.reserve(vertexPositions.size());
for (const auto& it : vertexPositions)
{
auto normal = XMVector3Normalize(XMLoadFloat3(&it));
auto pos = XMVectorScale(normal, radius);
XMFLOAT3 normalFloat3;
XMStoreFloat3(&normalFloat3, normal);
// calculate texture coordinates for this vertex
float longitude = atan2f(normalFloat3.x, -normalFloat3.z);
float latitude = acosf(normalFloat3.y);
float u = longitude / XM_2PI + 0.5f;
float v = latitude / XM_PI;
auto texcoord = XMVectorSet(1.0f - u, v, 0.0f, 0.0f);
vertices.push_back(VertexPositionNormalTexture(pos, normal, texcoord));
}
// There are a couple of fixes to do. One is a texture coordinate wraparound fixup. At some point, there will be
// a set of triangles somewhere in the mesh with texture coordinates such that the wraparound across 0.0/1.0
// occurs across that triangle. Eg. when the left hand side of the triangle has a U coordinate of 0.98 and the
// right hand side has a U coordinate of 0.0. The intent is that such a triangle should render with a U of 0.98 to
// 1.0, not 0.98 to 0.0. If we don't do this fixup, there will be a visible seam across one side of the sphere.
//
// Luckily this is relatively easy to fix. There is a straight edge which runs down the prime meridian of the
// completed sphere. If you imagine the vertices along that edge, they circumscribe a semicircular arc starting at
// y=1 and ending at y=-1, and sweeping across the range of z=0 to z=1. x stays zero. It's along this edge that we
// need to duplicate our vertices - and provide the correct texture coordinates.
size_t preFixupVertexCount = vertices.size();
for (size_t i = 0; i < preFixupVertexCount; ++i)
{
// This vertex is on the prime meridian if position.x and texcoord.u are both zero (allowing for small epsilon).
bool isOnPrimeMeridian = XMVector2NearEqual(
XMVectorSet(vertices[i].position.x, vertices[i].textureCoordinate.x, 0.0f, 0.0f),
XMVectorZero(),
XMVectorSplatEpsilon());
if (isOnPrimeMeridian)
{
size_t newIndex = vertices.size(); // the index of this vertex that we're about to add
CheckIndexOverflow(newIndex);
// copy this vertex, correct the texture coordinate, and add the vertex
VertexPositionNormalTexture v = vertices[i];
v.textureCoordinate.x = 1.0f;
vertices.push_back(v);
// Now find all the triangles which contain this vertex and update them if necessary
for (size_t j = 0; j < indices.size(); j += 3)
{
uint16_t* triIndex0 = &indices[j + 0];
uint16_t* triIndex1 = &indices[j + 1];
uint16_t* triIndex2 = &indices[j + 2];
if (*triIndex0 == i)
{
// nothing; just keep going
}
else if (*triIndex1 == i)
{
std::swap(triIndex0, triIndex1); // swap the pointers (not the values)
}
else if (*triIndex2 == i)
{
std::swap(triIndex0, triIndex2); // swap the pointers (not the values)
}
else
{
// this triangle doesn't use the vertex we're interested in
continue;
}
// If we got to this point then triIndex0 is the pointer to the index to the vertex we're looking at
assert(*triIndex0 == i);
assert(*triIndex1 != i && *triIndex2 != i); // assume no degenerate triangles
const VertexPositionNormalTexture& v0 = vertices[*triIndex0];
const VertexPositionNormalTexture& v1 = vertices[*triIndex1];
const VertexPositionNormalTexture& v2 = vertices[*triIndex2];
// check the other two vertices to see if we might need to fix this triangle
if (abs(v0.textureCoordinate.x - v1.textureCoordinate.x) > 0.5f ||
abs(v0.textureCoordinate.x - v2.textureCoordinate.x) > 0.5f)
{
// yep; replace the specified index to point to the new, corrected vertex
*triIndex0 = static_cast<uint16_t>(newIndex);
}
}
}
}
// And one last fix we need to do: the poles. A common use-case of a sphere mesh is to map a rectangular texture onto
// it. If that happens, then the poles become singularities which map the entire top and bottom rows of the texture
// onto a single point. In general there's no real way to do that right. But to match the behavior of non-geodesic
// spheres, we need to duplicate the pole vertex for every triangle that uses it. This will introduce seams near the
// poles, but reduce stretching.
auto fixPole = [&](size_t poleIndex)
{
const auto& poleVertex = vertices[poleIndex];
bool overwrittenPoleVertex = false; // overwriting the original pole vertex saves us one vertex
for (size_t i = 0; i < indices.size(); i += 3)
{
// These pointers point to the three indices which make up this triangle. pPoleIndex is the pointer to the
// entry in the index array which represents the pole index, and the other two pointers point to the other
// two indices making up this triangle.
uint16_t* pPoleIndex;
uint16_t* pOtherIndex0;
uint16_t* pOtherIndex1;
if (indices[i + 0] == poleIndex)
{
pPoleIndex = &indices[i + 0];
pOtherIndex0 = &indices[i + 1];
pOtherIndex1 = &indices[i + 2];
}
else if (indices[i + 1] == poleIndex)
{
pPoleIndex = &indices[i + 1];
pOtherIndex0 = &indices[i + 2];
pOtherIndex1 = &indices[i + 0];
}
else if (indices[i + 2] == poleIndex)
{
pPoleIndex = &indices[i + 2];
pOtherIndex0 = &indices[i + 0];
pOtherIndex1 = &indices[i + 1];
}
else
{
continue;
}
const auto& otherVertex0 = vertices[*pOtherIndex0];
const auto& otherVertex1 = vertices[*pOtherIndex1];
// Calculate the texcoords for the new pole vertex, add it to the vertices and update the index
VertexPositionNormalTexture newPoleVertex = poleVertex;
newPoleVertex.textureCoordinate.x = (otherVertex0.textureCoordinate.x + otherVertex1.textureCoordinate.x) / 2;
newPoleVertex.textureCoordinate.y = poleVertex.textureCoordinate.y;
if (!overwrittenPoleVertex)
{
vertices[poleIndex] = newPoleVertex;
overwrittenPoleVertex = true;
}
else
{
CheckIndexOverflow(vertices.size());
*pPoleIndex = static_cast<uint16_t>(vertices.size());
vertices.push_back(newPoleVertex);
}
}
};
fixPole(northPoleIndex);
fixPole(southPoleIndex);
// Build RH above
if (!rhcoords)
ReverseWinding(indices, vertices);
}