simulation/decai/simulation/simulate_entry_point.py [70:96]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
agents = [
    # Good
    Agent(address="Good",
          start_balance=10_000,
          mean_deposit=50,
          stdev_deposit=10,
          mean_update_wait_s=10 * 60,
          prob_mistake=0.0001,
          ),
    # Malicious: A determined agent with the goal of disrupting others.
    Agent(address="Bad",
          start_balance=10_000,
          mean_deposit=100,
          stdev_deposit=3,
          mean_update_wait_s=1 * 60 * 60,
          good=False,
          ),
    # One that just calls the model and pays to use the model.
    Agent(address="Caller",
          start_balance=30_000,
          mean_deposit=0,
          stdev_deposit=0,
          mean_update_wait_s=2 * 60 * 60,
          calls_model=True,
          pay_to_call=50
          ),
]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



simulation/decai/simulation/simulate_imdb_perceptron.py [27:53]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    agents = [
        # Good
        Agent(address="Good",
              start_balance=10_000,
              mean_deposit=50,
              stdev_deposit=10,
              mean_update_wait_s=10 * 60,
              prob_mistake=0.0001,
              ),
        # Malicious: A determined agent with the goal of disrupting others.
        Agent(address="Bad",
              start_balance=10_000,
              mean_deposit=100,
              stdev_deposit=3,
              mean_update_wait_s=1 * 60 * 60,
              good=False,
              ),
        # One that just calls the model and pays to use the model.
        Agent(address="Caller",
              start_balance=30_000,
              mean_deposit=0,
              stdev_deposit=0,
              mean_update_wait_s=2 * 60 * 60,
              calls_model=True,
              pay_to_call=50
              ),
    ]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



