def task()

in simulation/decai/simulation/simulate.py [0:0]


        def task():
            (x_train, y_train), (x_test, y_test) = \
                self._data_loader.load_data(train_size=train_size, test_size=test_size)
            classifications = self._data_loader.classifications()
            x_train, x_test, feature_index_mapping = self._feature_index_mapper.map(x_train, x_test)
            x_train_len = x_train.shape[0]
            init_idx = int(x_train_len * init_train_data_portion)
            self._logger.info("Initializing model with %d out of %d samples.",
                              init_idx, x_train_len)
            x_init_data, y_init_data = x_train[:init_idx], y_train[:init_idx]
            x_remaining, y_remaining = x_train[init_idx:], y_train[init_idx:]

            save_model = isinstance(self._decai.im, PredictionMarket) and self._decai.im.reset_model_during_reward_phase
            self._decai.model.init_model(x_init_data, y_init_data, save_model)

            if self._logger.isEnabledFor(logging.DEBUG):
                s = self._decai.model.evaluate(x_init_data, y_init_data)
                self._logger.debug("Initial training data evaluation: %s", s)
                if len(x_remaining) > 0:
                    s = self._decai.model.evaluate(x_remaining, y_remaining)
                    self._logger.debug("Remaining training data evaluation: %s", s)
                else:
                    self._logger.debug("There is no more remaining data to evaluate.")

            self._logger.info("Evaluating initial model.")
            accuracy = self._decai.model.log_evaluation_details(x_test, y_test)
            self._logger.info("Initial test set accuracy: %0.2f%%", accuracy * 100)
            t = self._time()
            doc.add_next_tick_callback(
                partial(plot_accuracy_cb, t=t, a=accuracy))

            q = PriorityQueue()
            random.shuffle(agents)
            for agent in agents:
                self._balances.initialize(agent.address, agent.start_balance)
                q.put((self._time() + agent.get_next_wait_s(), agent))
                doc.add_next_tick_callback(
                    partial(plot_cb, agent=agent, t=t, b=agent.start_balance))

            unclaimed_data = []
            next_data_index = 0
            next_accuracy_plot_time = 1E4
            desc = "Processing agent requests"
            current_time = 0
            with tqdm(desc=desc,
                      unit_scale=True, mininterval=2, unit=" requests",
                      total=len(x_remaining),
                      ) as pbar:
                while not q.empty():
                    # For now assume sending a transaction (editing) is free (no gas)
                    # since it should be relatively cheaper than the deposit required to add data.
                    # It may not be cheaper than calling `report`.

                    if next_data_index >= len(x_remaining):
                        if not continuous_evaluation or len(unclaimed_data) == 0:
                            break

                    current_time, agent = q.get()
                    update_balance_plot = False
                    if current_time > next_accuracy_plot_time:
                        self._logger.debug("Evaluating.")
                        next_accuracy_plot_time += accuracy_plot_wait_s
                        accuracy = self._decai.model.evaluate(x_test, y_test)
                        doc.add_next_tick_callback(
                            partial(plot_accuracy_cb, t=current_time, a=accuracy))

                        if continuous_evaluation:
                            self._logger.debug("Unclaimed data: %d", len(unclaimed_data))
                            pbar.set_description(f"{desc} ({len(unclaimed_data)} unclaimed)")

                        with open(save_path, 'w') as f:
                            json.dump(save_data, f, separators=(',', ':'))
                        self._decai.model.export(model_save_path, classifications,
                                                 feature_index_mapping=feature_index_mapping)

                        if os.path.exists(plot_save_path):
                            os.remove(plot_save_path)
                        self.save_plot_image(plot, plot_save_path)

                    self._time.set_time(current_time)

                    balance = self._balances[agent.address]
                    if balance > 0 and next_data_index < len(x_remaining):
                        # Pick data.
                        x, y = x_remaining[next_data_index], y_remaining[next_data_index]

                        if agent.calls_model:
                            # Only call the model if it's good.
                            if random.random() < accuracy:
                                update_balance_plot = True
                                self._decai.predict(Msg(agent.address, agent.pay_to_call), x)
                        else:
                            if not agent.good:
                                y = 1 - y
                            if agent.prob_mistake > 0 and random.random() < agent.prob_mistake:
                                y = 1 - y

                            # Bad agents always contribute.
                            # Good agents will only work if the model is doing well.
                            # Add a bit of chance they will contribute since 0.85 accuracy is okay.
                            if not agent.good or random.random() < accuracy + 0.15:
                                value = agent.get_next_deposit()
                                if value > balance:
                                    value = balance
                                msg = Msg(agent.address, value)
                                try:
                                    self._decai.add_data(msg, x, y)
                                    # Don't need to plot every time. Plot less as we get more data.
                                    update_balance_plot = next_data_index / len(x_remaining) + 0.1 < random.random()
                                    balance = self._balances[agent.address]
                                    if continuous_evaluation:
                                        unclaimed_data.append((current_time, agent, x, y))
                                    next_data_index += 1
                                    pbar.update()
                                except RejectException:
                                    # Probably failed because they didn't pay enough which is okay.
                                    # Or if not enough time has passed since data was attempted to be added
                                    # which is okay too because a real contract would reject this
                                    # because the smallest unit of time we can use is 1s.
                                    if self._logger.isEnabledFor(logging.DEBUG):
                                        self._logger.exception("Error adding data.")

                    if balance > 0:
                        q.put((current_time + agent.get_next_wait_s(), agent))

                    claimed_indices = []
                    for i in range(len(unclaimed_data)):
                        added_time, adding_agent, x, classification = unclaimed_data[i]
                        if current_time - added_time < self._decai.im.refund_time_s:
                            break
                        if next_data_index >= len(x_remaining) \
                                and current_time - added_time < self._decai.im.any_address_claim_wait_time_s:
                            break
                        balance = self._balances[agent.address]
                        msg = Msg(agent.address, balance)

                        if current_time - added_time > self._decai.im.any_address_claim_wait_time_s:
                            # Attempt to take the entire deposit.
                            try:
                                self._decai.report(msg, x, classification, added_time, adding_agent.address)
                                update_balance_plot = True
                            except RejectException:
                                if self._logger.isEnabledFor(logging.DEBUG):
                                    self._logger.exception("Error taking reward.")
                        elif adding_agent.address == agent.address:
                            try:
                                self._decai.refund(msg, x, classification, added_time)
                                update_balance_plot = True
                            except RejectException:
                                if self._logger.isEnabledFor(logging.DEBUG):
                                    self._logger.exception("Error getting refund.")
                        else:
                            try:
                                self._decai.report(msg, x, classification, added_time, adding_agent.address)
                                update_balance_plot = True
                            except RejectException:
                                if self._logger.isEnabledFor(logging.DEBUG):
                                    self._logger.exception("Error taking reward.")

                        stored_data = self._decai.data_handler.get_data(x, classification,
                                                                        added_time, adding_agent.address)
                        if stored_data.claimable_amount <= 0:
                            claimed_indices.append(i)

                    for i in claimed_indices[::-1]:
                        unclaimed_data.pop(i)

                    if update_balance_plot:
                        balance = self._balances[agent.address]
                        doc.add_next_tick_callback(
                            partial(plot_cb, agent=agent, t=current_time, b=balance))

            self._logger.info("Done going through data.")
            if continuous_evaluation:
                pbar.set_description(f"{desc} ({len(unclaimed_data)} unclaimed)")

            if isinstance(self._decai.im, PredictionMarket):
                self._time.add_time(agents[0].get_next_wait_s())
                self._decai.im.end_market()
                for i, test_set_portion in enumerate(pm_test_sets):
                    if i != self._decai.im.test_reveal_index:
                        self._decai.im.verify_next_test_set(test_set_portion)
                with tqdm(desc="Processing contributions",
                          unit_scale=True, mininterval=2, unit=" contributions",
                          total=self._decai.im.get_num_contributions_in_market(),
                          ) as pbar:
                    finished_first_round_of_rewards = False
                    while self._decai.im.remaining_bounty_rounds > 0:
                        self._time.add_time(agents[0].get_next_wait_s())
                        self._decai.im.process_contribution()
                        pbar.update()

                        if not finished_first_round_of_rewards:
                            accuracy = self._decai.im.prev_acc
                            # If we plot too often then we end up with a blob instead of a line.
                            if random.random() < 0.1:
                                doc.add_next_tick_callback(
                                    partial(plot_accuracy_cb, t=self._time(), a=accuracy))

                        if self._decai.im.state == MarketPhase.REWARD_RESTART:
                            finished_first_round_of_rewards = True
                            if self._decai.im.reset_model_during_reward_phase:
                                # Update the accuracy after resetting all data.
                                accuracy = self._decai.im.prev_acc
                            else:
                                # Use the accuracy after training with all data.
                                pass
                            doc.add_next_tick_callback(
                                partial(plot_accuracy_cb, t=self._time(), a=accuracy))
                            pbar.total += self._decai.im.get_num_contributions_in_market()
                            self._time.add_time(self._time() * 0.001)

                            for agent in agents:
                                balance = self._balances[agent.address]
                                market_bal = self._decai.im._market_balances[agent.address]
                                self._logger.debug("\"%s\" market balance: %0.2f   Balance: %0.2f",
                                                   agent.address, market_bal, balance)
                                doc.add_next_tick_callback(
                                    partial(plot_cb, agent=agent, t=self._time(), b=max(balance + market_bal, 0)))

                self._time.add_time(self._time() * 0.02)
                for agent in agents:
                    msg = Msg(agent.address, 0)
                    # Find data submitted by them.
                    data = None
                    for key, stored_data in self._decai.data_handler:
                        if stored_data.sender == agent.address:
                            data = key[0]
                            break
                    if data is not None:
                        self._decai.refund(msg, np.array(data), stored_data.classification, stored_data.time)
                        balance = self._balances[agent.address]
                        doc.add_next_tick_callback(
                            partial(plot_cb, agent=agent, t=self._time(), b=balance))
                        self._logger.info("Balance for \"%s\": %.2f (%+.2f%%)",
                                          agent.address, balance,
                                          (balance - agent.start_balance) / agent.start_balance * 100)
                    else:
                        self._logger.warning("No data submitted by \"%s\" was found."
                                             "\nWill not update it's balance.", agent.address)

                self._logger.info("Done issuing rewards.")

            accuracy = self._decai.model.log_evaluation_details(x_test, y_test)
            doc.add_next_tick_callback(
                partial(plot_accuracy_cb, t=current_time + 100, a=accuracy))

            with open(save_path, 'w') as f:
                json.dump(save_data, f, separators=(',', ':'))
            self._decai.model.export(model_save_path, classifications, feature_index_mapping=feature_index_mapping)

            if os.path.exists(plot_save_path):
                os.remove(plot_save_path)
            self.save_plot_image(plot, plot_save_path)