def inception_resnet_v1()

in inception_resnet_v1.py [0:0]


def inception_resnet_v1(inputs, is_training=True,
                        dropout_keep_prob=0.8,
                        bottleneck_layer_size=128,
                        reuse=None, 
                        scope='InceptionResnetV1'):
    """Creates the Inception Resnet V1 model.
    Args:
      inputs: a 4-D tensor of size [batch_size, height, width, 3].
      num_classes: number of predicted classes.
      is_training: whether is training or not.
      dropout_keep_prob: float, the fraction to keep before final layer.
      reuse: whether or not the network and its variables should be reused. To be
        able to reuse 'scope' must be given.
      scope: Optional variable_scope.
    Returns:
      logits: the logits outputs of the model.
      end_points: the set of end_points from the inception model.
    """
    end_points = {}
  
    with tf.variable_scope(scope, 'InceptionResnetV1', [inputs], reuse=reuse):
        with slim.arg_scope([slim.batch_norm, slim.dropout],
                            is_training=is_training):
            with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
                                stride=1, padding='SAME'):
      
                # 149 x 149 x 32
                net = slim.conv2d(inputs, 32, 3, stride=2, padding='VALID',
                                  scope='Conv2d_1a_3x3')
                end_points['Conv2d_1a_3x3'] = net
                # 147 x 147 x 32
                net = slim.conv2d(net, 32, 3, padding='VALID',
                                  scope='Conv2d_2a_3x3')
                end_points['Conv2d_2a_3x3'] = net
                # 147 x 147 x 64
                net = slim.conv2d(net, 64, 3, scope='Conv2d_2b_3x3')
                end_points['Conv2d_2b_3x3'] = net
                # 73 x 73 x 64
                net = slim.max_pool2d(net, 3, stride=2, padding='VALID',
                                      scope='MaxPool_3a_3x3')
                end_points['MaxPool_3a_3x3'] = net
                # 73 x 73 x 80
                net = slim.conv2d(net, 80, 1, padding='VALID',
                                  scope='Conv2d_3b_1x1')
                end_points['Conv2d_3b_1x1'] = net
                # 71 x 71 x 192
                net = slim.conv2d(net, 192, 3, padding='VALID',
                                  scope='Conv2d_4a_3x3')
                end_points['Conv2d_4a_3x3'] = net
                # 35 x 35 x 256
                net = slim.conv2d(net, 256, 3, stride=2, padding='VALID',
                                  scope='Conv2d_4b_3x3')
                end_points['Conv2d_4b_3x3'] = net
                
                # 5 x Inception-resnet-A
                net = slim.repeat(net, 5, block35, scale=0.17)
                end_points['Mixed_5a'] = net
        
                # Reduction-A
                with tf.variable_scope('Mixed_6a'):
                    net = reduction_a(net, 192, 192, 256, 384)
                end_points['Mixed_6a'] = net
                
                # 10 x Inception-Resnet-B
                net = slim.repeat(net, 10, block17, scale=0.10)
                end_points['Mixed_6b'] = net
                
                # Reduction-B
                with tf.variable_scope('Mixed_7a'):
                    net = reduction_b(net)
                end_points['Mixed_7a'] = net
                
                # 5 x Inception-Resnet-C
                net = slim.repeat(net, 5, block8, scale=0.20)
                end_points['Mixed_8a'] = net
                
                net = block8(net, activation_fn=None)
                end_points['Mixed_8b'] = net
                
                with tf.variable_scope('Logits'):
                    end_points['PrePool'] = net
                    #pylint: disable=no-member
                    net = slim.avg_pool2d(net, net.get_shape()[1:3], padding='VALID',
                                          scope='AvgPool_1a_8x8')
                    net = slim.flatten(net)
          
                    net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
                                       scope='Dropout')
          
                    end_points['PreLogitsFlatten'] = net
                
                net = slim.fully_connected(net, bottleneck_layer_size, activation_fn=None, 
                        scope='Bottleneck', reuse=False)
  
    return net, end_points