in inception_resnet_v1.py [0:0]
def inception_resnet_v1(inputs, is_training=True,
dropout_keep_prob=0.8,
bottleneck_layer_size=128,
reuse=None,
scope='InceptionResnetV1'):
"""Creates the Inception Resnet V1 model.
Args:
inputs: a 4-D tensor of size [batch_size, height, width, 3].
num_classes: number of predicted classes.
is_training: whether is training or not.
dropout_keep_prob: float, the fraction to keep before final layer.
reuse: whether or not the network and its variables should be reused. To be
able to reuse 'scope' must be given.
scope: Optional variable_scope.
Returns:
logits: the logits outputs of the model.
end_points: the set of end_points from the inception model.
"""
end_points = {}
with tf.variable_scope(scope, 'InceptionResnetV1', [inputs], reuse=reuse):
with slim.arg_scope([slim.batch_norm, slim.dropout],
is_training=is_training):
with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
stride=1, padding='SAME'):
# 149 x 149 x 32
net = slim.conv2d(inputs, 32, 3, stride=2, padding='VALID',
scope='Conv2d_1a_3x3')
end_points['Conv2d_1a_3x3'] = net
# 147 x 147 x 32
net = slim.conv2d(net, 32, 3, padding='VALID',
scope='Conv2d_2a_3x3')
end_points['Conv2d_2a_3x3'] = net
# 147 x 147 x 64
net = slim.conv2d(net, 64, 3, scope='Conv2d_2b_3x3')
end_points['Conv2d_2b_3x3'] = net
# 73 x 73 x 64
net = slim.max_pool2d(net, 3, stride=2, padding='VALID',
scope='MaxPool_3a_3x3')
end_points['MaxPool_3a_3x3'] = net
# 73 x 73 x 80
net = slim.conv2d(net, 80, 1, padding='VALID',
scope='Conv2d_3b_1x1')
end_points['Conv2d_3b_1x1'] = net
# 71 x 71 x 192
net = slim.conv2d(net, 192, 3, padding='VALID',
scope='Conv2d_4a_3x3')
end_points['Conv2d_4a_3x3'] = net
# 35 x 35 x 256
net = slim.conv2d(net, 256, 3, stride=2, padding='VALID',
scope='Conv2d_4b_3x3')
end_points['Conv2d_4b_3x3'] = net
# 5 x Inception-resnet-A
net = slim.repeat(net, 5, block35, scale=0.17)
end_points['Mixed_5a'] = net
# Reduction-A
with tf.variable_scope('Mixed_6a'):
net = reduction_a(net, 192, 192, 256, 384)
end_points['Mixed_6a'] = net
# 10 x Inception-Resnet-B
net = slim.repeat(net, 10, block17, scale=0.10)
end_points['Mixed_6b'] = net
# Reduction-B
with tf.variable_scope('Mixed_7a'):
net = reduction_b(net)
end_points['Mixed_7a'] = net
# 5 x Inception-Resnet-C
net = slim.repeat(net, 5, block8, scale=0.20)
end_points['Mixed_8a'] = net
net = block8(net, activation_fn=None)
end_points['Mixed_8b'] = net
with tf.variable_scope('Logits'):
end_points['PrePool'] = net
#pylint: disable=no-member
net = slim.avg_pool2d(net, net.get_shape()[1:3], padding='VALID',
scope='AvgPool_1a_8x8')
net = slim.flatten(net)
net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
scope='Dropout')
end_points['PreLogitsFlatten'] = net
net = slim.fully_connected(net, bottleneck_layer_size, activation_fn=None,
scope='Bottleneck', reuse=False)
return net, end_points