in demo.py [0:0]
def restore_weights(sess,opt):
var_list = tf.trainable_variables()
g_list = tf.global_variables()
# add batch normalization params into trainable variables
bn_moving_vars = [g for g in g_list if 'moving_mean' in g.name]
bn_moving_vars += [g for g in g_list if 'moving_variance' in g.name]
var_list +=bn_moving_vars
# create saver to save and restore weights
saver = tf.train.Saver(var_list = var_list)
saver.restore(sess,opt.pretrain_weights)