TensorFlow/squeezenet/src/models/research/slim/datasets/cifar10.py [82:99]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      'label': slim.tfexample_decoder.Tensor('image/class/label'),
  }

  decoder = slim.tfexample_decoder.TFExampleDecoder(
      keys_to_features, items_to_handlers)

  labels_to_names = None
  if dataset_utils.has_labels(dataset_dir):
    labels_to_names = dataset_utils.read_label_file(dataset_dir)

  return slim.dataset.Dataset(
      data_sources=file_pattern,
      reader=reader,
      decoder=decoder,
      num_samples=SPLITS_TO_SIZES[split_name],
      items_to_descriptions=_ITEMS_TO_DESCRIPTIONS,
      num_classes=_NUM_CLASSES,
      labels_to_names=labels_to_names)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



TensorFlow/squeezenet/src/models/research/slim/datasets/flowers.py [82:99]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      'label': slim.tfexample_decoder.Tensor('image/class/label'),
  }

  decoder = slim.tfexample_decoder.TFExampleDecoder(
      keys_to_features, items_to_handlers)

  labels_to_names = None
  if dataset_utils.has_labels(dataset_dir):
    labels_to_names = dataset_utils.read_label_file(dataset_dir)

  return slim.dataset.Dataset(
      data_sources=file_pattern,
      reader=reader,
      decoder=decoder,
      num_samples=SPLITS_TO_SIZES[split_name],
      items_to_descriptions=_ITEMS_TO_DESCRIPTIONS,
      num_classes=_NUM_CLASSES,
      labels_to_names=labels_to_names)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



