in TensorFlow/squeezenet/src/squeezenet/arg_parsing.py [0:0]
def _create_parser():
program_name = 'Squeezenet Training Program'
desc = 'Program for training squeezenet with periodic evaluation.'
parser = argparse.ArgumentParser(program_name, description=desc)
parser.add_argument(
'--model_dir',
type=str,
required=True,
help='''Output directory for checkpoints and summaries.'''
)
parser.add_argument(
'--train_tfrecord_filepaths',
nargs='+',
type=str,
required=True,
help='''Filepaths of the TFRecords to be used for training.'''
)
parser.add_argument(
'--validation_tfrecord_filepaths',
nargs='+',
type=str,
required=True,
help='''Filepaths of the TFRecords to be used for evaluation.'''
)
parser.add_argument(
'--network',
type=str,
required=True,
choices=networks.catalogue
)
parser.add_argument(
'--target_image_size',
default=[224, 224],
nargs=2,
type=int,
help='''Input images will be resized to this.'''
)
parser.add_argument(
'--num_classes',
default=10,
type=int,
help='''Number of classes (unique labels) in the dataset.
Ignored if using CIFAR network version.'''
)
parser.add_argument(
'--num_gpus',
default=1,
type=int,
)
parser.add_argument(
'--batch_size',
type=int,
required=True
)
parser.add_argument(
'--learning_rate', '-l',
type=float,
default=0.001,
help='''Initial learning rate for ADAM optimizer.'''
)
parser.add_argument(
'--batch_norm_decay',
type=float,
default=0.9
)
parser.add_argument(
'--weight_decay',
type=float,
default=0.0,
help='''L2 regularization factor for convolution layer weights.
0.0 indicates no regularization.'''
)
parser.add_argument(
'--num_input_threads',
default=1,
type=int,
help='''The number input elements to process in parallel.'''
)
parser.add_argument(
'--shuffle_buffer',
type=int,
required=True,
help='''The minimum number of elements in the pool of training data
from which to randomly sample.'''
)
parser.add_argument(
'--seed',
default=1337,
type=int
)
parser.add_argument(
'--max_train_steps',
default=1801,
type=int
)
parser.add_argument(
'--summary_interval',
default=100,
type=int
)
parser.add_argument(
'--checkpoint_interval',
default=100,
type=int
)
parser.add_argument(
'--validation_interval',
default=100,
type=int
)
parser.add_argument(
'--keep_last_n_checkpoints',
default=3,
type=int
)
parser.add_argument(
'--data_format',
default='NCHW',
type=str,
choices=['NCHW', 'NHWC']
)
parser.add_argument(
'--trace',
action='store_true'
)
parser.add_argument('--clone_on_cpu', action='store_true')
return parser