econml/dml/_rlearner.py [410:439]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    @property
    def models_y(self):
        return [[mdl._model_y for mdl in mdls] for mdls in super().models_nuisance_]

    @property
    def models_t(self):
        return [[mdl._model_t for mdl in mdls] for mdls in super().models_nuisance_]

    @property
    def nuisance_scores_y(self):
        return self.nuisance_scores_[0]

    @property
    def nuisance_scores_t(self):
        return self.nuisance_scores_[1]

    @property
    def residuals_(self):
        """
        A tuple (y_res, T_res, X, W), of the residuals from the first stage estimation
        along with the associated X and W. Samples are not guaranteed to be in the same
        order as the input order.
        """
        if not hasattr(self, '_cached_values'):
            raise AttributeError("Estimator is not fitted yet!")
        if self._cached_values is None:
            raise AttributeError("`fit` was called with `cache_values=False`. "
                                 "Set to `True` to enable residual storage.")
        Y_res, T_res = self._cached_values.nuisances
        return Y_res, T_res, self._cached_values.X, self._cached_values.W
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



econml/dynamic/dml/_dml.py [763:792]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    @property
    def models_y(self):
        return [[mdl._model_y for mdl in mdls] for mdls in super().models_nuisance_]

    @property
    def models_t(self):
        return [[mdl._model_t for mdl in mdls] for mdls in super().models_nuisance_]

    @property
    def nuisance_scores_y(self):
        return self.nuisance_scores_[0]

    @property
    def nuisance_scores_t(self):
        return self.nuisance_scores_[1]

    @property
    def residuals_(self):
        """
        A tuple (y_res, T_res, X, W), of the residuals from the first stage estimation
        along with the associated X and W. Samples are not guaranteed to be in the same
        order as the input order.
        """
        if not hasattr(self, '_cached_values'):
            raise AttributeError("Estimator is not fitted yet!")
        if self._cached_values is None:
            raise AttributeError("`fit` was called with `cache_values=False`. "
                                 "Set to `True` to enable residual storage.")
        Y_res, T_res = self._cached_values.nuisances
        return Y_res, T_res, self._cached_values.X, self._cached_values.W
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



