in incidenceMapR/R/effectsModel.R [26:115]
effectsModel <- function(db , shp, family = NULL, neighborGraph = NULL){
#INLA data frame that may get augmented columns we don't need to see when we're done
inputData <- db$observedData
# identify intended family
if(is.null(family)){
if (all(inputData$n == inputData$positive)){
family = 'poisson'
} else if (any(inputData$n > inputData$positive)){
family = 'binomial'
} else if (any(inputData$n < inputData$positive)){
return('n < positive !!! invald db$observedData.')
}
}
# construct priors
hyper=list()
hyper$global <- list(prec = list( prior = "pc.prec", param = 1/10, alpha = 0.01))
hyper$local <- list(prec = list( prior = "pc.prec", param = 1/200, alpha = 0.01))
hyper$age <- list(prec = list( prior = "pc.prec", param = 1, alpha = 0.01))
hyper$time <- list(prec = list( prior = "pc.prec", param = 1/50, alpha = 0.01))
# unlike smoothing model, we only replicate latent fields across pathogens, but treat all other factors as fixed effects
# find pathogen types
if('pathogen' %in% names(db$observedData)){
levelSet <- levels(as.factor(inputData$pathogen))
numLevels <- length(levelSet)
validLatentFieldColumns <- c('pathogen')
} else {
return('error! must provide "pathogen" column.')
}
# set family across all levels
family <- rep(family,numLevels)
# build outcome matrix and replicate list for multiple likelihoods
outcome <- matrix(NA,nrow(inputData),numLevels)
replicateIdx <- matrix(NA,nrow(inputData),1)
for( k in levelSet){
idx <- inputData$pathogen %in% k
count <- which(levelSet %in% k)
outcome[idx, count] <- inputData$positive[idx]
replicateIdx[idx]<-count
}
# initialize formula for each level
if(numLevels>1){
outcomeStr <- paste('cbind(',paste(paste('outcome',1:numLevels,sep='.'),sep='',collapse=', '),')',sep='',collapse = '')
formula <- as.formula(paste(outcomeStr,'~','pathogen - 1 + catchment',sep=' '))
} else { # why does R do inconsistent stuff with column names!?!!
#formula <- as.formula('outcome ~ 1 + catchment')
formula <- as.formula('outcome ~ 1')
}
# factors as fixed effects, assuming no interaction terms
validFactorNames <- names(db$observedData)[ !( (names(db$observedData) %in% c('pathogen','n','positive')) |
grepl('row',names(db$observedData)) |
grepl('age',names(db$observedData)) |
grepl('residence_',names(db$observedData)) |
grepl('work_',names(db$observedData)) |
grepl('encounter',names(db$observedData)) )]
factorIdx <- names(db$observedData) %in% validFactorNames
for(COLUMN in names(db$observedData)[factorIdx]){
formula <- as.formula(paste(as.character(formula)[2],'~',paste(as.character(formula)[3],COLUMN,sep='+')))
}
df <- data.frame(outcome = outcome, inputData, replicateIdx)
if(any(grepl('residence', names(inputData)) | grepl('work', names(inputData)))){
spatial_domain<-shp$domain[1]
} else {
spatial_domain <- NULL
}
modelDefinition <- list(type='effects', family = family, formula = formula, lincomb = c(),
inputData = df, neighborGraph=neighborGraph, hyper=hyper,
observedData = db$observedData,
queryList = db$queryList,
spatial_domain = spatial_domain)
return(modelDefinition)
}