api/BigGAN/deployment/app.py [89:101]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  if label.shape[0] != num:
    raise ValueError('Got # noise samples ({}) != # label samples ({})'
                     .format(noise.shape[0], label.shape[0]))
  ims = []
  for batch_start in range(0, num, batch_size):
    s = slice(batch_start, min(num, batch_start + batch_size))
    feed_dict = {input_z: noise[s], input_y: label[s], input_trunc: truncation}
    ims.append(sess.run(output, feed_dict=feed_dict))
  ims = np.concatenate(ims, axis=0)
  assert ims.shape[0] == num
  ims = np.clip(((ims + 1) / 2.0) * 256, 0, 255)
  ims = np.uint8(ims)
  return ims
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



utilities/transition video.py [56:69]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  if label.shape[0] != num:
    raise ValueError('Got # noise samples ({}) != # label samples ({})'
                     .format(noise.shape[0], label.shape[0]))
  # label = one_hot_if_needed(label, vocab_size)
  ims = []
  for batch_start in range(0, num, batch_size):
    s = slice(batch_start, min(num, batch_start + batch_size))
    feed_dict = {input_z: noise[s], input_y: label[s], input_trunc: truncation}
    ims.append(sess.run(output, feed_dict=feed_dict))
  ims = np.concatenate(ims, axis=0)
  assert ims.shape[0] == num
  ims = np.clip(((ims + 1) / 2.0) * 256, 0, 255)
  ims = np.uint8(ims)
  return ims
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



