def copy_output()

in ml_service/pipelines/run_parallel_batchscore_pipeline.py [0:0]


def copy_output(step_id: str, env: Env):
    accounturl = "https://{}.blob.core.windows.net".format(
        env.scoring_datastore_storage_name
    )

    srcblobname = "azureml/{}/{}_out/parallel_run_step.txt".format(
        step_id, env.scoring_datastore_storage_name
    )

    srcbloburl = "{}/{}/{}".format(
        accounturl, env.scoring_datastore_output_container, srcblobname
    )

    containerclient = ContainerClient(
        accounturl,
        env.scoring_datastore_output_container,
        env.scoring_datastore_access_key,
    )
    srcblobproperties = containerclient.get_blob_client(
        srcblobname
    ).get_blob_properties()  # noqa E501

    destfolder = srcblobproperties.last_modified.date().isoformat()
    filetime = (
        srcblobproperties.last_modified.time()
        .isoformat("milliseconds")
        .replace(":", "_")
        .replace(".", "_")
    )  # noqa E501
    destfilenameparts = env.scoring_datastore_output_filename.split(".")
    destblobname = "{}/{}_{}.{}".format(
        destfolder, destfilenameparts[0], filetime, destfilenameparts[1]
    )

    destblobclient = containerclient.get_blob_client(destblobname)
    destblobclient.start_copy_from_url(srcbloburl)