in ml_service/pipelines/run_parallel_batchscore_pipeline.py [0:0]
def copy_output(step_id: str, env: Env):
accounturl = "https://{}.blob.core.windows.net".format(
env.scoring_datastore_storage_name
)
srcblobname = "azureml/{}/{}_out/parallel_run_step.txt".format(
step_id, env.scoring_datastore_storage_name
)
srcbloburl = "{}/{}/{}".format(
accounturl, env.scoring_datastore_output_container, srcblobname
)
containerclient = ContainerClient(
accounturl,
env.scoring_datastore_output_container,
env.scoring_datastore_access_key,
)
srcblobproperties = containerclient.get_blob_client(
srcblobname
).get_blob_properties() # noqa E501
destfolder = srcblobproperties.last_modified.date().isoformat()
filetime = (
srcblobproperties.last_modified.time()
.isoformat("milliseconds")
.replace(":", "_")
.replace(".", "_")
) # noqa E501
destfilenameparts = env.scoring_datastore_output_filename.split(".")
destblobname = "{}/{}_{}.{}".format(
destfolder, destfilenameparts[0], filetime, destfilenameparts[1]
)
destblobclient = containerclient.get_blob_client(destblobname)
destblobclient.start_copy_from_url(srcbloburl)