in ml_service/pipelines/diabetes_regression_build_train_pipeline_with_r.py [0:0]
def main():
e = Env()
# Get Azure machine learning workspace
aml_workspace = Workspace.get(
name=e.workspace_name,
subscription_id=e.subscription_id,
resource_group=e.resource_group,
)
print("get_workspace:")
print(aml_workspace)
# Get Azure machine learning cluster
aml_compute = get_compute(aml_workspace, e.compute_name, e.vm_size)
if aml_compute is not None:
print("aml_compute:")
print(aml_compute)
# Create a reusable Azure ML environment
# Make sure to include `r-essentials'
# in diabetes_regression/conda_dependencies.yml
environment = get_environment(
aml_workspace,
e.aml_env_name,
conda_dependencies_file=e.aml_env_train_conda_dep_file,
create_new=e.rebuild_env,
) # NOQA: E501
run_config = RunConfiguration()
run_config.environment = environment
train_step = PythonScriptStep(
name="Train Model",
script_name="train_with_r.py",
compute_target=aml_compute,
source_directory="diabetes_regression/training/R",
runconfig=run_config,
allow_reuse=False,
)
print("Step Train created")
steps = [train_step]
train_pipeline = Pipeline(workspace=aml_workspace, steps=steps)
train_pipeline.validate()
published_pipeline = train_pipeline.publish(
name=e.pipeline_name,
description="Model training/retraining pipeline",
version=e.build_id,
)
print(f"Published pipeline: {published_pipeline.name}")
print(f"for build {published_pipeline.version}")